Function update
has a Cognitive Complexity of 31 (exceeds 5 allowed). Consider refactoring. Open
public function update(
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
File UserMapper.php
has 314 lines of code (exceeds 250 allowed). Consider refactoring. Open
<?php
namespace CodeJetter\components\user\mappers;
use CodeJetter\components\user\models\User;
The class UserMapper has an overall complexity of 75 which is very high. The configured complexity threshold is 50. Open
abstract class UserMapper extends BaseMapper
{
/**
* @param $email
* @param null $parentId
- Exclude checks
Method update
has 71 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function update(
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
Method add
has 51 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function add(array $inputs, array $fieldsValues = [], $extraDefinedInputs = [])
{
/**
* Start validating common inputs.
*/
Method getOneByEmail
has 47 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function getOneByEmail($email, $parentId = null, $status = null)
{
/**
* start validating.
*/
Function add
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
public function add(array $inputs, array $fieldsValues = [], $extraDefinedInputs = [])
{
/**
* Start validating common inputs.
*/
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method getDefinedInputs
has 43 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function getDefinedInputs($action = null, array $includingInputs = [], array $excludingInputs = [])
{
if ($action === 'batchUpdate') {
$idRule = new ValidatorRule('id');
$definedInputs['id'] = new DatabaseInput('id', [$idRule]);
Method getOneByUsername
has 37 lines of code (exceeds 25 allowed). Consider refactoring. Open
public function getOneByUsername($username, $status = null, $excludeArchived = true)
{
/**
* start validating.
*/
Function getDefinedInputs
has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring. Open
public function getDefinedInputs($action = null, array $includingInputs = [], array $excludingInputs = [])
{
if ($action === 'batchUpdate') {
$idRule = new ValidatorRule('id');
$definedInputs['id'] = new DatabaseInput('id', [$idRule]);
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function getOneByEmail
has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring. Open
public function getOneByEmail($email, $parentId = null, $status = null)
{
/**
* start validating.
*/
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method update
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
$extraDefinedInputs = [],
Function getOneByUsername
has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring. Open
public function getOneByUsername($username, $status = null, $excludeArchived = true)
{
/**
* start validating.
*/
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid too many return
statements within this method. Open
return $output;
The method add() has 104 lines of code. Current threshold is set to 100. Avoid really long methods. Open
public function add(array $inputs, array $fieldsValues = [], $extraDefinedInputs = [])
{
/**
* Start validating common inputs.
*/
- Exclude checks
The method add() has an NPath complexity of 1728. The configured NPath complexity threshold is 200. Open
public function add(array $inputs, array $fieldsValues = [], $extraDefinedInputs = [])
{
/**
* Start validating common inputs.
*/
- Read upRead up
- Exclude checks
NPathComplexity
Since: 0.1
The NPath complexity of a method is the number of acyclic execution paths through that method. A threshold of 200 is generally considered the point where measures should be taken to reduce complexity.
Example
class Foo {
function bar() {
// lots of complicated code
}
}
Source https://phpmd.org/rules/codesize.html#npathcomplexity
The method update() has 137 lines of code. Current threshold is set to 100. Avoid really long methods. Open
public function update(
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
- Exclude checks
The method update() has an NPath complexity of 76048. The configured NPath complexity threshold is 200. Open
public function update(
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
- Read upRead up
- Exclude checks
NPathComplexity
Since: 0.1
The NPath complexity of a method is the number of acyclic execution paths through that method. A threshold of 200 is generally considered the point where measures should be taken to reduce complexity.
Example
class Foo {
function bar() {
// lots of complicated code
}
}
Source https://phpmd.org/rules/codesize.html#npathcomplexity
The method add() has a Cyclomatic Complexity of 16. The configured cyclomatic complexity threshold is 10. Open
public function add(array $inputs, array $fieldsValues = [], $extraDefinedInputs = [])
{
/**
* Start validating common inputs.
*/
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method update() has a Cyclomatic Complexity of 28. The configured cyclomatic complexity threshold is 10. Open
public function update(
array $criteria,
array $inputs,
array $fieldsValues,
$limit = 0,
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
The method getDefinedInputs() has a Cyclomatic Complexity of 11. The configured cyclomatic complexity threshold is 10. Open
public function getDefinedInputs($action = null, array $includingInputs = [], array $excludingInputs = [])
{
if ($action === 'batchUpdate') {
$idRule = new ValidatorRule('id');
$definedInputs['id'] = new DatabaseInput('id', [$idRule]);
- Read upRead up
- Exclude checks
CyclomaticComplexity
Since: 0.1
Complexity is determined by the number of decision points in a method plus one for the method entry. The decision points are 'if', 'while', 'for', and 'case labels'. Generally, 1-4 is low complexity, 5-7 indicates moderate complexity, 8-10 is high complexity, and 11+ is very high complexity.
Example
// Cyclomatic Complexity = 11
class Foo {
1 public function example() {
2 if ($a == $b) {
3 if ($a1 == $b1) {
fiddle();
4 } elseif ($a2 == $b2) {
fiddle();
} else {
fiddle();
}
5 } elseif ($c == $d) {
6 while ($c == $d) {
fiddle();
}
7 } elseif ($e == $f) {
8 for ($n = 0; $n < $h; $n++) {
fiddle();
}
} else {
switch ($z) {
9 case 1:
fiddle();
break;
10 case 2:
fiddle();
break;
11 case 3:
fiddle();
break;
default:
fiddle();
break;
}
}
}
}
Source https://phpmd.org/rules/codesize.html#cyclomaticcomplexity
Avoid using undefined variables such as '$includingInputs' which will lead to PHP notices. Open
$definedInputs = $this->getDefinedInputs('add', $includingInputs);
- Read upRead up
- Exclude checks
UndefinedVariable
Since: 2.8.0
Detects when a variable is used that has not been defined before.
Example
class Foo
{
private function bar()
{
// $message is undefined
echo $message;
}
}
Source https://phpmd.org/rules/cleancode.html#undefinedvariable
Avoid using undefined variables such as '$includingInputs' which will lead to PHP notices. Open
$includingInputs[] = 'passwordConfirmation';
- Read upRead up
- Exclude checks
UndefinedVariable
Since: 2.8.0
Detects when a variable is used that has not been defined before.
Example
class Foo
{
private function bar()
{
// $message is undefined
echo $message;
}
}
Source https://phpmd.org/rules/cleancode.html#undefinedvariable
Avoid using undefined variables such as '$includingInputs' which will lead to PHP notices. Open
$includingInputs[] = 'password';
- Read upRead up
- Exclude checks
UndefinedVariable
Since: 2.8.0
Detects when a variable is used that has not been defined before.
Example
class Foo
{
private function bar()
{
// $message is undefined
echo $message;
}
}
Source https://phpmd.org/rules/cleancode.html#undefinedvariable
The class UserMapper has a coupling between objects value of 14. Consider to reduce the number of dependencies under 13. Open
abstract class UserMapper extends BaseMapper
{
/**
* @param $email
* @param null $parentId
- Read upRead up
- Exclude checks
CouplingBetweenObjects
Since: 1.1.0
A class with too many dependencies has negative impacts on several quality aspects of a class. This includes quality criteria like stability, maintainability and understandability
Example
class Foo {
/**
* @var \foo\bar\X
*/
private $x = null;
/**
* @var \foo\bar\Y
*/
private $y = null;
/**
* @var \foo\bar\Z
*/
private $z = null;
public function setFoo(\Foo $foo) {}
public function setBar(\Bar $bar) {}
public function setBaz(\Baz $baz) {}
/**
* @return \SplObjectStorage
* @throws \OutOfRangeException
* @throws \InvalidArgumentException
* @throws \ErrorException
*/
public function process(\Iterator $it) {}
// ...
}
Source https://phpmd.org/rules/design.html#couplingbetweenobjects
Missing class import via use statement (line '233', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
Missing class import via use statement (line '127', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
Missing class import via use statement (line '52', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
The method getOneByUsername has a boolean flag argument $excludeArchived, which is a certain sign of a Single Responsibility Principle violation. Open
public function getOneByUsername($username, $status = null, $excludeArchived = true)
- Read upRead up
- Exclude checks
BooleanArgumentFlag
Since: 1.4.0
A boolean flag argument is a reliable indicator for a violation of the Single Responsibility Principle (SRP). You can fix this problem by extracting the logic in the boolean flag into its own class or method.
Example
class Foo {
public function bar($flag = true) {
}
}
Source https://phpmd.org/rules/cleancode.html#booleanargumentflag
Missing class import via use statement (line '94', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
Missing class import via use statement (line '385', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
The method update has a boolean flag argument $batchAction, which is a certain sign of a Single Responsibility Principle violation. Open
$batchAction = false
- Read upRead up
- Exclude checks
BooleanArgumentFlag
Since: 1.4.0
A boolean flag argument is a reliable indicator for a violation of the Single Responsibility Principle (SRP). You can fix this problem by extracting the logic in the boolean flag into its own class or method.
Example
class Foo {
public function bar($flag = true) {
}
}
Source https://phpmd.org/rules/cleancode.html#booleanargumentflag
Missing class import via use statement (line '157', column '18'). Open
(new \CodeJetter\core\ErrorHandler())->logError($e);
- Read upRead up
- Exclude checks
MissingImport
Since: 2.7.0
Importing all external classes in a file through use statements makes them clearly visible.
Example
function make() {
return new \stdClass();
}
Source http://phpmd.org/rules/cleancode.html#MissingImport
The method update has a boolean flag argument $excludeArchived, which is a certain sign of a Single Responsibility Principle violation. Open
$excludeArchived = true,
- Read upRead up
- Exclude checks
BooleanArgumentFlag
Since: 1.4.0
A boolean flag argument is a reliable indicator for a violation of the Single Responsibility Principle (SRP). You can fix this problem by extracting the logic in the boolean flag into its own class or method.
Example
class Foo {
public function bar($flag = true) {
}
}
Source https://phpmd.org/rules/cleancode.html#booleanargumentflag
The method getOneByEmail uses an else expression. Else clauses are basically not necessary and you can simplify the code by not using them. Open
} else {
$output->setSuccess(false);
}
- Read upRead up
- Exclude checks
ElseExpression
Since: 1.4.0
An if expression with an else branch is basically not necessary. You can rewrite the conditions in a way that the else clause is not necessary and the code becomes simpler to read. To achieve this, use early return statements, though you may need to split the code it several smaller methods. For very simple assignments you could also use the ternary operations.
Example
class Foo
{
public function bar($flag)
{
if ($flag) {
// one branch
} else {
// another branch
}
}
}
Source https://phpmd.org/rules/cleancode.html#elseexpression
The method getDefinedInputs uses an else expression. Else clauses are basically not necessary and you can simplify the code by not using them. Open
} else {
$emailRule = new ValidatorRule('email');
$requiredRule = new ValidatorRule('required');
$nameInput = (in_array('name', $includingInputs)) ?
- Read upRead up
- Exclude checks
ElseExpression
Since: 1.4.0
An if expression with an else branch is basically not necessary. You can rewrite the conditions in a way that the else clause is not necessary and the code becomes simpler to read. To achieve this, use early return statements, though you may need to split the code it several smaller methods. For very simple assignments you could also use the ternary operations.
Example
class Foo
{
public function bar($flag)
{
if ($flag) {
// one branch
} else {
// another branch
}
}
}
Source https://phpmd.org/rules/cleancode.html#elseexpression
The method getOneByUsername uses an else expression. Else clauses are basically not necessary and you can simplify the code by not using them. Open
} else {
$output->setSuccess(false);
}
- Read upRead up
- Exclude checks
ElseExpression
Since: 1.4.0
An if expression with an else branch is basically not necessary. You can rewrite the conditions in a way that the else clause is not necessary and the code becomes simpler to read. To achieve this, use early return statements, though you may need to split the code it several smaller methods. For very simple assignments you could also use the ternary operations.
Example
class Foo
{
public function bar($flag)
{
if ($flag) {
// one branch
} else {
// another branch
}
}
}
Source https://phpmd.org/rules/cleancode.html#elseexpression
The method add uses an else expression. Else clauses are basically not necessary and you can simplify the code by not using them. Open
} else {
$output->setSuccess(false);
}
- Read upRead up
- Exclude checks
ElseExpression
Since: 1.4.0
An if expression with an else branch is basically not necessary. You can rewrite the conditions in a way that the else clause is not necessary and the code becomes simpler to read. To achieve this, use early return statements, though you may need to split the code it several smaller methods. For very simple assignments you could also use the ternary operations.
Example
class Foo
{
public function bar($flag)
{
if ($flag) {
// one branch
} else {
// another branch
}
}
}
Source https://phpmd.org/rules/cleancode.html#elseexpression
Avoid unused local variables such as '$aCriteriaKey'. Open
foreach ($criteria as $aCriteriaKey => $aCriteriaInfo) {
- Read upRead up
- Exclude checks
UnusedLocalVariable
Since: 0.2
Detects when a local variable is declared and/or assigned, but not used.
Example
class Foo {
public function doSomething()
{
$i = 5; // Unused
}
}
Source https://phpmd.org/rules/unusedcode.html#unusedlocalvariable
Avoid unused parameters such as '$excludeArchived'. Open
$excludeArchived = true,
- Read upRead up
- Exclude checks
UnusedFormalParameter
Since: 0.2
Avoid passing parameters to methods or constructors and then not using those parameters.
Example
class Foo
{
private function bar($howdy)
{
// $howdy is not used
}
}
Source https://phpmd.org/rules/unusedcode.html#unusedformalparameter
Similar blocks of code found in 2 locations. Consider refactoring. Open
try {
$requiredRule = new ValidatorRule('required');
$usernameInput = new Input('username', [$requiredRule]);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 130.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (!empty($inputs['username'])) {
if (isset($foundCurrentUser) && $foundCurrentUser instanceof User && $foundCurrentUser->getUsername() !== $inputs['username']) {
// Username is updated, check if it does not exist
$found = $this->getOneByUsername($inputs['username'])->getData();
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 106.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (!empty($inputs['email'])) {
if (isset($foundCurrentUser) && $foundCurrentUser instanceof User && $foundCurrentUser->getEmail() !== $inputs['email']) {
// Username is updated, check if it does not exist
$found = $this->getOneByEmail($inputs['email'])->getData();
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 106.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Identical blocks of code found in 2 locations. Consider refactoring. Open
try {
$result = $this->getOne($criteria, [], $excludeArchived);
if (!empty($result)) {
$output->setSuccess(true);
$output->setData($result);
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 91.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Avoid excessively long variable names like $statusesWhitelistRule. Keep variable name length under 20. Open
$statusesWhitelistRule = new ValidatorRule('whitelist', ['whitelist' => $statusesWhitelist]);
- Read upRead up
- Exclude checks
LongVariable
Since: 0.2
Detects when a field, formal or local variable is declared with a long name.
Example
class Something {
protected $reallyLongIntName = -3; // VIOLATION - Field
public static function main( array $interestingArgumentsList[] ) { // VIOLATION - Formal
$otherReallyLongName = -5; // VIOLATION - Local
for ($interestingIntIndex = 0; // VIOLATION - For
$interestingIntIndex < 10;
$interestingIntIndex++ ) {
}
}
}
Source https://phpmd.org/rules/naming.html#longvariable
Avoid excessively long variable names like $updatingChildByParent. Keep variable name length under 20. Open
$updatingChildByParent = false;
- Read upRead up
- Exclude checks
LongVariable
Since: 0.2
Detects when a field, formal or local variable is declared with a long name.
Example
class Something {
protected $reallyLongIntName = -3; // VIOLATION - Field
public static function main( array $interestingArgumentsList[] ) { // VIOLATION - Formal
$otherReallyLongName = -5; // VIOLATION - Local
for ($interestingIntIndex = 0; // VIOLATION - For
$interestingIntIndex < 10;
$interestingIntIndex++ ) {
}
}
}
Source https://phpmd.org/rules/naming.html#longvariable
Avoid variables with short names like $id. Configured minimum length is 3. Open
public function updateById($id, array $inputs)
- Read upRead up
- Exclude checks
ShortVariable
Since: 0.2
Detects when a field, local, or parameter has a very short name.
Example
class Something {
private $q = 15; // VIOLATION - Field
public static function main( array $as ) { // VIOLATION - Formal
$r = 20 + $this->q; // VIOLATION - Local
for (int $i = 0; $i < 10; $i++) { // Not a Violation (inside FOR)
$r += $this->q;
}
}
}
Source https://phpmd.org/rules/naming.html#shortvariable
Line exceeds 120 characters; contains 122 characters Open
if (!empty($inputs['password']) || (isset($inputs['passwordRequired']) && $inputs['passwordRequired'] === true)) {
- Exclude checks
Line exceeds 120 characters; contains 122 characters Open
if (!empty($inputs['password']) || (isset($inputs['passwordRequired']) && $inputs['passwordRequired'] === true)) {
- Exclude checks
Line exceeds 120 characters; contains 134 characters Open
if (isset($foundCurrentUser) && $foundCurrentUser instanceof User && $foundCurrentUser->getEmail() !== $inputs['email']) {
- Exclude checks
Line exceeds 120 characters; contains 140 characters Open
if (isset($foundCurrentUser) && $foundCurrentUser instanceof User && $foundCurrentUser->getUsername() !== $inputs['username']) {
- Exclude checks