A "NullPointerException" could be thrown; "offlineSkinInstance" is nullable here. Open
DevCapes.logger.error(String.format("Error parsing offline skin, %s", offlineSkinInstance.toString()));
- Read upRead up
- Exclude checks
A reference to null
should never be dereferenced/accessed. Doing so will cause a NullPointerException
to be thrown. At
best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or
it could allow an attacker to bypass security measures.
Note that when they are present, this rule takes advantage of @CheckForNull
and @Nonnull
annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull
is used
on the parameter to equals
, which by contract should always work with null.
Noncompliant Code Example
@CheckForNull String getName(){...} public boolean isNameEmpty() { return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked }
Connection conn = null; Statement stmt = null; try{ conn = DriverManager.getConnection(DB_URL,USER,PASS); stmt = conn.createStatement(); // ... }catch(Exception e){ e.printStackTrace(); }finally{ stmt.close(); // Noncompliant; stmt could be null if an exception was thrown in the try{} block conn.close(); // Noncompliant; conn could be null if an exception was thrown }
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...} public void append(@CheckForNull Color color) { merge(currentColor, color); // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters }
void paint(Color color) { if(color == null) { System.out.println("Unable to apply color " + color.toString()); // Noncompliant; NullPointerException will be thrown return; } ... }
See
- MITRE, CWE-476 - NULL Pointer Dereference
- CERT, EXP34-C. - Do not dereference null pointers
- CERT, EXP01-J. - Do not use a null in a case where an object is required
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (capeInstance != null) {
userInstance.capes.add(capeInstance);
} else {
DevCapes.logger.error(String.format("Error parsing cape, %s", cape.toString()));
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
if (offlineSkinInstance != null) {
userInstance.skins.add(offlineSkinInstance);
} else {
DevCapes.logger.error(String.format("Error parsing offline skin, %s", offlineSkinInstance.toString()));
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 40.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76