Showing 108 of 112 total issues
Define a constant instead of duplicating this literal " WHERE " 5 times. Open
String query = "SELECT * FROM " + TABLE_ITEMS + " WHERE " + BUS_STOP_CODE + "=" + busStopCode + ";";
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Return an empty collection instead of null. Open
return null;
- Read upRead up
- Exclude checks
Returning null
instead of an actual array or collection forces callers of the method to explicitly test for nullity, making them more
complex and less readable.
Moreover, in many cases, null
is used as a synonym for empty.
Noncompliant Code Example
public static List<Result> getResults() { return null; // Noncompliant } public static Result[] getResults() { return null; // Noncompliant } public static void main(String[] args) { Result[] results = getResults(); if (results != null) { // Nullity test required to prevent NPE for (Result result: results) { /* ... */ } } }
Compliant Solution
public static List<Result> getResults() { return Collections.emptyList(); // Compliant } public static Result[] getResults() { return new Result[0]; } public static void main(String[] args) { for (Result result: getResults()) { /* ... */ } }
See
- CERT, MSC19-C. - For functions that return an array, prefer returning an empty array over a null value
- CERT, MET55-J. - Return an empty array or collection instead of a null value for methods that return an array or collection
Define a constant instead of duplicating this literal "ETA: " 3 times. Open
.snippet("ETA: " + processArrival(arr1) + " (" + processType(type1) + ")")
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
A "NullPointerException" could be thrown; "buses" is nullable here. Open
buses.setLayoutManager(linearLayoutManager);
- Read upRead up
- Exclude checks
A reference to null
should never be dereferenced/accessed. Doing so will cause a NullPointerException
to be thrown. At
best, such an exception will cause abrupt program termination. At worst, it could expose debugging information that would be useful to an attacker, or
it could allow an attacker to bypass security measures.
Note that when they are present, this rule takes advantage of @CheckForNull
and @Nonnull
annotations defined in JSR-305 to understand which values are and are not nullable except when @Nonnull
is used
on the parameter to equals
, which by contract should always work with null.
Noncompliant Code Example
@CheckForNull String getName(){...} public boolean isNameEmpty() { return getName().length() == 0; // Noncompliant; the result of getName() could be null, but isn't null-checked }
Connection conn = null; Statement stmt = null; try{ conn = DriverManager.getConnection(DB_URL,USER,PASS); stmt = conn.createStatement(); // ... }catch(Exception e){ e.printStackTrace(); }finally{ stmt.close(); // Noncompliant; stmt could be null if an exception was thrown in the try{} block conn.close(); // Noncompliant; conn could be null if an exception was thrown }
private void merge(@Nonnull Color firstColor, @Nonnull Color secondColor){...} public void append(@CheckForNull Color color) { merge(currentColor, color); // Noncompliant; color should be null-checked because merge(...) doesn't accept nullable parameters }
void paint(Color color) { if(color == null) { System.out.println("Unable to apply color " + color.toString()); // Noncompliant; NullPointerException will be thrown return; } ... }
See
- MITRE, CWE-476 - NULL Pointer Dereference
- CERT, EXP34-C. - Do not dereference null pointers
- CERT, EXP01-J. - Do not use a null in a case where an object is required
Rename "sp" which hides the field declared at line 49. Open
SharedPreferences sp = PreferenceManager.getDefaultSharedPreferences(this);
- Read upRead up
- Exclude checks
Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.
Noncompliant Code Example
class Foo { public int myField; public void doSomething() { int myField = 0; ... } }
See
- CERT, DCL01-C. - Do not reuse variable names in subscopes
- CERT, DCL51-J. - Do not shadow or obscure identifiers in subscopes
Define a constant instead of duplicating this literal "SELECT * FROM " 7 times. Open
String query = "SELECT * FROM " + TABLE_ITEMS;
- Read upRead up
- Exclude checks
Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.
On the other hand, constants can be referenced from many places, but only need to be updated in a single place.
Noncompliant Code Example
With the default threshold of 3:
public void run() { prepare("action1"); // Noncompliant - "action1" is duplicated 3 times execute("action1"); release("action1"); } @SuppressWarning("all") // Compliant - annotations are excluded private void method1() { /* ... */ } @SuppressWarning("all") private void method2() { /* ... */ } public String method3(String a) { System.out.println("'" + a + "'"); // Compliant - literal "'" has less than 5 characters and is excluded return ""; // Compliant - literal "" has less than 5 characters and is excluded }
Compliant Solution
private static final String ACTION_1 = "action1"; // Compliant public void run() { prepare(ACTION_1); // Compliant execute(ACTION_1); release(ACTION_1); }
Exceptions
To prevent generating some false-positives, literals having less than 5 characters are excluded.
Return an empty collection instead of null. Open
return null;
- Read upRead up
- Exclude checks
Returning null
instead of an actual array or collection forces callers of the method to explicitly test for nullity, making them more
complex and less readable.
Moreover, in many cases, null
is used as a synonym for empty.
Noncompliant Code Example
public static List<Result> getResults() { return null; // Noncompliant } public static Result[] getResults() { return null; // Noncompliant } public static void main(String[] args) { Result[] results = getResults(); if (results != null) { // Nullity test required to prevent NPE for (Result result: results) { /* ... */ } } }
Compliant Solution
public static List<Result> getResults() { return Collections.emptyList(); // Compliant } public static Result[] getResults() { return new Result[0]; } public static void main(String[] args) { for (Result result: getResults()) { /* ... */ } }
See
- CERT, MSC19-C. - For functions that return an array, prefer returning an empty array over a null value
- CERT, MET55-J. - Return an empty array or collection instead of a null value for methods that return an array or collection
This block of commented-out lines of code should be removed. Open
/*switch (sp.getString("companionDevice", "none")) {
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.