ivmartel/dwv

View on GitHub
decoders/pdfjs/jpx.js

Summary

Maintainability
F
2 mos
Test Coverage
/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */
/* Copyright 2012 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/* globals ArithmeticDecoder, globalScope, log2, readUint16, readUint32,
           info, warn */

'use strict';

var JpxImage = (function JpxImageClosure() {
  // Table E.1
  var SubbandsGainLog2 = {
    'LL': 0,
    'LH': 1,
    'HL': 1,
    'HH': 2
  };
  function JpxImage() {
    this.failOnCorruptedImage = true;
  }
  JpxImage.prototype = {
    parse: function JpxImage_parse(data) {

      var head = readUint16(data, 0);
      // No box header, immediate start of codestream (SOC)
      if (head === 0xFF4F) {
        this.parseCodestream(data, 0, data.length);
        return;
      }

      var position = 0, length = data.length;
      while (position < length) {
        var headerSize = 8;
        var lbox = readUint32(data, position);
        var tbox = readUint32(data, position + 4);
        position += headerSize;
        if (lbox === 1) {
          // XLBox: read UInt64 according to spec.
          // JavaScript's int precision of 53 bit should be sufficient here.
          lbox = readUint32(data, position) * 4294967296 +
                 readUint32(data, position + 4);
          position += 8;
          headerSize += 8;
        }
        if (lbox === 0) {
          lbox = length - position + headerSize;
        }
        if (lbox < headerSize) {
          throw new Error('JPX Error: Invalid box field size');
        }
        var dataLength = lbox - headerSize;
        var jumpDataLength = true;
        switch (tbox) {
          case 0x6A703268: // 'jp2h'
            jumpDataLength = false; // parsing child boxes
            break;
          case 0x636F6C72: // 'colr'
            // Colorspaces are not used, the CS from the PDF is used.
            var method = data[position];
            var precedence = data[position + 1];
            var approximation = data[position + 2];
            if (method === 1) {
              // enumerated colorspace
              var colorspace = readUint32(data, position + 3);
              switch (colorspace) {
                case 16: // this indicates a sRGB colorspace
                case 17: // this indicates a grayscale colorspace
                case 18: // this indicates a YUV colorspace
                  break;
                default:
                  warn('Unknown colorspace ' + colorspace);
                  break;
              }
            } else if (method === 2) {
              info('ICC profile not supported');
            }
            break;
          case 0x6A703263: // 'jp2c'
            this.parseCodestream(data, position, position + dataLength);
            break;
          case 0x6A502020: // 'jP\024\024'
            if (0x0d0a870a !== readUint32(data, position)) {
              warn('Invalid JP2 signature');
            }
            break;
          // The following header types are valid but currently not used:
          case 0x6A501A1A: // 'jP\032\032'
          case 0x66747970: // 'ftyp'
          case 0x72726571: // 'rreq'
          case 0x72657320: // 'res '
          case 0x69686472: // 'ihdr'
            break;
          default:
            var headerType = String.fromCharCode((tbox >> 24) & 0xFF,
                                                 (tbox >> 16) & 0xFF,
                                                 (tbox >> 8) & 0xFF,
                                                 tbox & 0xFF);
            warn('Unsupported header type ' + tbox + ' (' + headerType + ')');
            break;
        }
        if (jumpDataLength) {
          position += dataLength;
        }
      }
    },
    parseImageProperties: function JpxImage_parseImageProperties(stream) {
      var newByte = stream.getByte();
      while (newByte >= 0) {
        var oldByte = newByte;
        newByte = stream.getByte();
        var code = (oldByte << 8) | newByte;
        // Image and tile size (SIZ)
        if (code === 0xFF51) {
          stream.skip(4);
          var Xsiz = stream.getInt32() >>> 0; // Byte 4
          var Ysiz = stream.getInt32() >>> 0; // Byte 8
          var XOsiz = stream.getInt32() >>> 0; // Byte 12
          var YOsiz = stream.getInt32() >>> 0; // Byte 16
          stream.skip(16);
          var Csiz = stream.getUint16(); // Byte 36
          this.width = Xsiz - XOsiz;
          this.height = Ysiz - YOsiz;
          this.componentsCount = Csiz;
          // Results are always returned as Uint8Arrays
          this.bitsPerComponent = 8;
          return;
        }
      }
      throw new Error('JPX Error: No size marker found in JPX stream');
    },
    parseCodestream: function JpxImage_parseCodestream(data, start, end) {
      var context = {};
      try {
        var doNotRecover = false;
        var position = start;
        while (position + 1 < end) {
          var code = readUint16(data, position);
          position += 2;

          var length = 0, j, sqcd, spqcds, spqcdSize, scalarExpounded, tile;
          switch (code) {
            case 0xFF4F: // Start of codestream (SOC)
              context.mainHeader = true;
              break;
            case 0xFFD9: // End of codestream (EOC)
              break;
            case 0xFF51: // Image and tile size (SIZ)
              length = readUint16(data, position);
              var siz = {};
              siz.Xsiz = readUint32(data, position + 4);
              siz.Ysiz = readUint32(data, position + 8);
              siz.XOsiz = readUint32(data, position + 12);
              siz.YOsiz = readUint32(data, position + 16);
              siz.XTsiz = readUint32(data, position + 20);
              siz.YTsiz = readUint32(data, position + 24);
              siz.XTOsiz = readUint32(data, position + 28);
              siz.YTOsiz = readUint32(data, position + 32);
              var componentsCount = readUint16(data, position + 36);
              siz.Csiz = componentsCount;
              var components = [];
              j = position + 38;
              for (var i = 0; i < componentsCount; i++) {
                var component = {
                  precision: (data[j] & 0x7F) + 1,
                  isSigned: !!(data[j] & 0x80),
                  XRsiz: data[j + 1],
                  YRsiz: data[j + 1]
                };
                calculateComponentDimensions(component, siz);
                components.push(component);
              }
              context.SIZ = siz;
              context.components = components;
              calculateTileGrids(context, components);
              context.QCC = [];
              context.COC = [];
              break;
            case 0xFF5C: // Quantization default (QCD)
              length = readUint16(data, position);
              var qcd = {};
              j = position + 2;
              sqcd = data[j++];
              switch (sqcd & 0x1F) {
                case 0:
                  spqcdSize = 8;
                  scalarExpounded = true;
                  break;
                case 1:
                  spqcdSize = 16;
                  scalarExpounded = false;
                  break;
                case 2:
                  spqcdSize = 16;
                  scalarExpounded = true;
                  break;
                default:
                  throw new Error('JPX Error: Invalid SQcd value ' + sqcd);
              }
              qcd.noQuantization = (spqcdSize === 8);
              qcd.scalarExpounded = scalarExpounded;
              qcd.guardBits = sqcd >> 5;
              spqcds = [];
              while (j < length + position) {
                var spqcd = {};
                if (spqcdSize === 8) {
                  spqcd.epsilon = data[j++] >> 3;
                  spqcd.mu = 0;
                } else {
                  spqcd.epsilon = data[j] >> 3;
                  spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
                  j += 2;
                }
                spqcds.push(spqcd);
              }
              qcd.SPqcds = spqcds;
              if (context.mainHeader) {
                context.QCD = qcd;
              } else {
                context.currentTile.QCD = qcd;
                context.currentTile.QCC = [];
              }
              break;
            case 0xFF5D: // Quantization component (QCC)
              length = readUint16(data, position);
              var qcc = {};
              j = position + 2;
              var cqcc;
              if (context.SIZ.Csiz < 257) {
                cqcc = data[j++];
              } else {
                cqcc = readUint16(data, j);
                j += 2;
              }
              sqcd = data[j++];
              switch (sqcd & 0x1F) {
                case 0:
                  spqcdSize = 8;
                  scalarExpounded = true;
                  break;
                case 1:
                  spqcdSize = 16;
                  scalarExpounded = false;
                  break;
                case 2:
                  spqcdSize = 16;
                  scalarExpounded = true;
                  break;
                default:
                  throw new Error('JPX Error: Invalid SQcd value ' + sqcd);
              }
              qcc.noQuantization = (spqcdSize === 8);
              qcc.scalarExpounded = scalarExpounded;
              qcc.guardBits = sqcd >> 5;
              spqcds = [];
              while (j < (length + position)) {
                spqcd = {};
                if (spqcdSize === 8) {
                  spqcd.epsilon = data[j++] >> 3;
                  spqcd.mu = 0;
                } else {
                  spqcd.epsilon = data[j] >> 3;
                  spqcd.mu = ((data[j] & 0x7) << 8) | data[j + 1];
                  j += 2;
                }
                spqcds.push(spqcd);
              }
              qcc.SPqcds = spqcds;
              if (context.mainHeader) {
                context.QCC[cqcc] = qcc;
              } else {
                context.currentTile.QCC[cqcc] = qcc;
              }
              break;
            case 0xFF52: // Coding style default (COD)
              length = readUint16(data, position);
              var cod = {};
              j = position + 2;
              var scod = data[j++];
              cod.entropyCoderWithCustomPrecincts = !!(scod & 1);
              cod.sopMarkerUsed = !!(scod & 2);
              cod.ephMarkerUsed = !!(scod & 4);
              cod.progressionOrder = data[j++];
              cod.layersCount = readUint16(data, j);
              j += 2;
              cod.multipleComponentTransform = data[j++];

              cod.decompositionLevelsCount = data[j++];
              cod.xcb = (data[j++] & 0xF) + 2;
              cod.ycb = (data[j++] & 0xF) + 2;
              var blockStyle = data[j++];
              cod.selectiveArithmeticCodingBypass = !!(blockStyle & 1);
              cod.resetContextProbabilities = !!(blockStyle & 2);
              cod.terminationOnEachCodingPass = !!(blockStyle & 4);
              cod.verticalyStripe = !!(blockStyle & 8);
              cod.predictableTermination = !!(blockStyle & 16);
              cod.segmentationSymbolUsed = !!(blockStyle & 32);
              cod.reversibleTransformation = data[j++];
              if (cod.entropyCoderWithCustomPrecincts) {
                var precinctsSizes = [];
                while (j < length + position) {
                  var precinctsSize = data[j++];
                  precinctsSizes.push({
                    PPx: precinctsSize & 0xF,
                    PPy: precinctsSize >> 4
                  });
                }
                cod.precinctsSizes = precinctsSizes;
              }
              var unsupported = [];
              if (cod.selectiveArithmeticCodingBypass) {
                unsupported.push('selectiveArithmeticCodingBypass');
              }
              if (cod.resetContextProbabilities) {
                unsupported.push('resetContextProbabilities');
              }
              if (cod.terminationOnEachCodingPass) {
                unsupported.push('terminationOnEachCodingPass');
              }
              if (cod.verticalyStripe) {
                unsupported.push('verticalyStripe');
              }
              if (cod.predictableTermination) {
                unsupported.push('predictableTermination');
              }
              if (unsupported.length > 0) {
                doNotRecover = true;
                throw new Error('JPX Error: Unsupported COD options (' +
                                unsupported.join(', ') + ')');
              }
              if (context.mainHeader) {
                context.COD = cod;
              } else {
                context.currentTile.COD = cod;
                context.currentTile.COC = [];
              }
              break;
            case 0xFF90: // Start of tile-part (SOT)
              length = readUint16(data, position);
              tile = {};
              tile.index = readUint16(data, position + 2);
              tile.length = readUint32(data, position + 4);
              tile.dataEnd = tile.length + position - 2;
              tile.partIndex = data[position + 8];
              tile.partsCount = data[position + 9];

              context.mainHeader = false;
              if (tile.partIndex === 0) {
                // reset component specific settings
                tile.COD = context.COD;
                tile.COC = context.COC.slice(0); // clone of the global COC
                tile.QCD = context.QCD;
                tile.QCC = context.QCC.slice(0); // clone of the global COC
              }
              context.currentTile = tile;
              break;
            case 0xFF93: // Start of data (SOD)
              tile = context.currentTile;
              if (tile.partIndex === 0) {
                initializeTile(context, tile.index);
                buildPackets(context);
              }

              // moving to the end of the data
              length = tile.dataEnd - position;
              parseTilePackets(context, data, position, length);
              break;
            case 0xFF55: // Tile-part lengths, main header (TLM)
            case 0xFF57: // Packet length, main header (PLM)
            case 0xFF58: // Packet length, tile-part header (PLT)
            case 0xFF64: // Comment (COM)
            case 0xFF53: // Coding style component (COC)
              length = readUint16(data, position);
              // skipping content
              break;
            default:
              throw new Error('JPX Error: Unknown codestream code: ' +
                              code.toString(16));
          }
          position += length;
        }
      } catch (e) {
        if (doNotRecover || this.failOnCorruptedImage) {
          throw e;
        } else {
          warn('Trying to recover from ' + e.message);
        }
      }
      this.tiles = transformComponents(context);
      this.width = context.SIZ.Xsiz - context.SIZ.XOsiz;
      this.height = context.SIZ.Ysiz - context.SIZ.YOsiz;
      this.componentsCount = context.SIZ.Csiz;
    }
  };
  function calculateComponentDimensions(component, siz) {
    // Section B.2 Component mapping
    component.x0 = Math.ceil(siz.XOsiz / component.XRsiz);
    component.x1 = Math.ceil(siz.Xsiz / component.XRsiz);
    component.y0 = Math.ceil(siz.YOsiz / component.YRsiz);
    component.y1 = Math.ceil(siz.Ysiz / component.YRsiz);
    component.width = component.x1 - component.x0;
    component.height = component.y1 - component.y0;
  }
  function calculateTileGrids(context, components) {
    var siz = context.SIZ;
    // Section B.3 Division into tile and tile-components
    var tile, tiles = [];
    var numXtiles = Math.ceil((siz.Xsiz - siz.XTOsiz) / siz.XTsiz);
    var numYtiles = Math.ceil((siz.Ysiz - siz.YTOsiz) / siz.YTsiz);
    for (var q = 0; q < numYtiles; q++) {
      for (var p = 0; p < numXtiles; p++) {
        tile = {};
        tile.tx0 = Math.max(siz.XTOsiz + p * siz.XTsiz, siz.XOsiz);
        tile.ty0 = Math.max(siz.YTOsiz + q * siz.YTsiz, siz.YOsiz);
        tile.tx1 = Math.min(siz.XTOsiz + (p + 1) * siz.XTsiz, siz.Xsiz);
        tile.ty1 = Math.min(siz.YTOsiz + (q + 1) * siz.YTsiz, siz.Ysiz);
        tile.width = tile.tx1 - tile.tx0;
        tile.height = tile.ty1 - tile.ty0;
        tile.components = [];
        tiles.push(tile);
      }
    }
    context.tiles = tiles;

    var componentsCount = siz.Csiz;
    for (var i = 0, ii = componentsCount; i < ii; i++) {
      var component = components[i];
      for (var j = 0, jj = tiles.length; j < jj; j++) {
        var tileComponent = {};
        tile = tiles[j];
        tileComponent.tcx0 = Math.ceil(tile.tx0 / component.XRsiz);
        tileComponent.tcy0 = Math.ceil(tile.ty0 / component.YRsiz);
        tileComponent.tcx1 = Math.ceil(tile.tx1 / component.XRsiz);
        tileComponent.tcy1 = Math.ceil(tile.ty1 / component.YRsiz);
        tileComponent.width = tileComponent.tcx1 - tileComponent.tcx0;
        tileComponent.height = tileComponent.tcy1 - tileComponent.tcy0;
        tile.components[i] = tileComponent;
      }
    }
  }
  function getBlocksDimensions(context, component, r) {
    var codOrCoc = component.codingStyleParameters;
    var result = {};
    if (!codOrCoc.entropyCoderWithCustomPrecincts) {
      result.PPx = 15;
      result.PPy = 15;
    } else {
      result.PPx = codOrCoc.precinctsSizes[r].PPx;
      result.PPy = codOrCoc.precinctsSizes[r].PPy;
    }
    // calculate codeblock size as described in section B.7
    result.xcb_ = (r > 0 ? Math.min(codOrCoc.xcb, result.PPx - 1) :
                   Math.min(codOrCoc.xcb, result.PPx));
    result.ycb_ = (r > 0 ? Math.min(codOrCoc.ycb, result.PPy - 1) :
                   Math.min(codOrCoc.ycb, result.PPy));
    return result;
  }
  function buildPrecincts(context, resolution, dimensions) {
    // Section B.6 Division resolution to precincts
    var precinctWidth = 1 << dimensions.PPx;
    var precinctHeight = 1 << dimensions.PPy;
    // Jasper introduces codeblock groups for mapping each subband codeblocks
    // to precincts. Precinct partition divides a resolution according to width
    // and height parameters. The subband that belongs to the resolution level
    // has a different size than the level, unless it is the zero resolution.

    // From Jasper documentation: jpeg2000.pdf, section K: Tier-2 coding:
    // The precinct partitioning for a particular subband is derived from a
    // partitioning of its parent LL band (i.e., the LL band at the next higher
    // resolution level)... The LL band associated with each resolution level is
    // divided into precincts... Each of the resulting precinct regions is then
    // mapped into its child subbands (if any) at the next lower resolution
    // level. This is accomplished by using the coordinate transformation
    // (u, v) = (ceil(x/2), ceil(y/2)) where (x, y) and (u, v) are the
    // coordinates of a point in the LL band and child subband, respectively.
    var isZeroRes = resolution.resLevel === 0;
    var precinctWidthInSubband = 1 << (dimensions.PPx + (isZeroRes ? 0 : -1));
    var precinctHeightInSubband = 1 << (dimensions.PPy + (isZeroRes ? 0 : -1));
    var numprecinctswide = (resolution.trx1 > resolution.trx0 ?
      Math.ceil(resolution.trx1 / precinctWidth) -
      Math.floor(resolution.trx0 / precinctWidth) : 0);
    var numprecinctshigh = (resolution.try1 > resolution.try0 ?
      Math.ceil(resolution.try1 / precinctHeight) -
      Math.floor(resolution.try0 / precinctHeight) : 0);
    var numprecincts = numprecinctswide * numprecinctshigh;

    resolution.precinctParameters = {
      precinctWidth: precinctWidth,
      precinctHeight: precinctHeight,
      numprecinctswide: numprecinctswide,
      numprecinctshigh: numprecinctshigh,
      numprecincts: numprecincts,
      precinctWidthInSubband: precinctWidthInSubband,
      precinctHeightInSubband: precinctHeightInSubband
    };
  }
  function buildCodeblocks(context, subband, dimensions) {
    // Section B.7 Division sub-band into code-blocks
    var xcb_ = dimensions.xcb_;
    var ycb_ = dimensions.ycb_;
    var codeblockWidth = 1 << xcb_;
    var codeblockHeight = 1 << ycb_;
    var cbx0 = subband.tbx0 >> xcb_;
    var cby0 = subband.tby0 >> ycb_;
    var cbx1 = (subband.tbx1 + codeblockWidth - 1) >> xcb_;
    var cby1 = (subband.tby1 + codeblockHeight - 1) >> ycb_;
    var precinctParameters = subband.resolution.precinctParameters;
    var codeblocks = [];
    var precincts = [];
    var i, j, codeblock, precinctNumber;
    for (j = cby0; j < cby1; j++) {
      for (i = cbx0; i < cbx1; i++) {
        codeblock = {
          cbx: i,
          cby: j,
          tbx0: codeblockWidth * i,
          tby0: codeblockHeight * j,
          tbx1: codeblockWidth * (i + 1),
          tby1: codeblockHeight * (j + 1)
        };

        codeblock.tbx0_ = Math.max(subband.tbx0, codeblock.tbx0);
        codeblock.tby0_ = Math.max(subband.tby0, codeblock.tby0);
        codeblock.tbx1_ = Math.min(subband.tbx1, codeblock.tbx1);
        codeblock.tby1_ = Math.min(subband.tby1, codeblock.tby1);

        // Calculate precinct number for this codeblock, codeblock position
        // should be relative to its subband, use actual dimension and position
        // See comment about codeblock group width and height
        var pi = Math.floor((codeblock.tbx0_ - subband.tbx0) /
          precinctParameters.precinctWidthInSubband);
        var pj = Math.floor((codeblock.tby0_ - subband.tby0) /
          precinctParameters.precinctHeightInSubband);
        precinctNumber = pi + (pj * precinctParameters.numprecinctswide);

        codeblock.precinctNumber = precinctNumber;
        codeblock.subbandType = subband.type;
        codeblock.Lblock = 3;

        if (codeblock.tbx1_ <= codeblock.tbx0_ ||
            codeblock.tby1_ <= codeblock.tby0_) {
          continue;
        }
        codeblocks.push(codeblock);
        // building precinct for the sub-band
        var precinct = precincts[precinctNumber];
        if (precinct !== undefined) {
          if (i < precinct.cbxMin) {
            precinct.cbxMin = i;
          } else if (i > precinct.cbxMax) {
            precinct.cbxMax = i;
          }
          if (j < precinct.cbyMin) {
            precinct.cbxMin = j;
          } else if (j > precinct.cbyMax) {
            precinct.cbyMax = j;
          }
        } else {
          precincts[precinctNumber] = precinct = {
            cbxMin: i,
            cbyMin: j,
            cbxMax: i,
            cbyMax: j
          };
        }
        codeblock.precinct = precinct;
      }
    }
    subband.codeblockParameters = {
      codeblockWidth: xcb_,
      codeblockHeight: ycb_,
      numcodeblockwide: cbx1 - cbx0 + 1,
      numcodeblockhigh: cby1 - cby0 + 1
    };
    subband.codeblocks = codeblocks;
    subband.precincts = precincts;
  }
  function createPacket(resolution, precinctNumber, layerNumber) {
    var precinctCodeblocks = [];
    // Section B.10.8 Order of info in packet
    var subbands = resolution.subbands;
    // sub-bands already ordered in 'LL', 'HL', 'LH', and 'HH' sequence
    for (var i = 0, ii = subbands.length; i < ii; i++) {
      var subband = subbands[i];
      var codeblocks = subband.codeblocks;
      for (var j = 0, jj = codeblocks.length; j < jj; j++) {
        var codeblock = codeblocks[j];
        if (codeblock.precinctNumber !== precinctNumber) {
          continue;
        }
        precinctCodeblocks.push(codeblock);
      }
    }
    return {
      layerNumber: layerNumber,
      codeblocks: precinctCodeblocks
    };
  }
  function LayerResolutionComponentPositionIterator(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var layersCount = tile.codingStyleDefaultParameters.layersCount;
    var componentsCount = siz.Csiz;
    var maxDecompositionLevelsCount = 0;
    for (var q = 0; q < componentsCount; q++) {
      maxDecompositionLevelsCount = Math.max(maxDecompositionLevelsCount,
        tile.components[q].codingStyleParameters.decompositionLevelsCount);
    }

    var l = 0, r = 0, i = 0, k = 0;

    this.nextPacket = function JpxImage_nextPacket() {
      // Section B.12.1.1 Layer-resolution-component-position
      for (; l < layersCount; l++) {
        for (; r <= maxDecompositionLevelsCount; r++) {
          for (; i < componentsCount; i++) {
            var component = tile.components[i];
            if (r > component.codingStyleParameters.decompositionLevelsCount) {
              continue;
            }

            var resolution = component.resolutions[r];
            var numprecincts = resolution.precinctParameters.numprecincts;
            for (; k < numprecincts;) {
              var packet = createPacket(resolution, k, l);
              k++;
              return packet;
            }
            k = 0;
          }
          i = 0;
        }
        r = 0;
      }
    };
  }
  function ResolutionLayerComponentPositionIterator(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var layersCount = tile.codingStyleDefaultParameters.layersCount;
    var componentsCount = siz.Csiz;
    var maxDecompositionLevelsCount = 0;
    for (var q = 0; q < componentsCount; q++) {
      maxDecompositionLevelsCount = Math.max(maxDecompositionLevelsCount,
        tile.components[q].codingStyleParameters.decompositionLevelsCount);
    }

    var r = 0, l = 0, i = 0, k = 0;

    this.nextPacket = function JpxImage_nextPacket() {
      // Section B.12.1.2 Resolution-layer-component-position
      for (; r <= maxDecompositionLevelsCount; r++) {
        for (; l < layersCount; l++) {
          for (; i < componentsCount; i++) {
            var component = tile.components[i];
            if (r > component.codingStyleParameters.decompositionLevelsCount) {
              continue;
            }

            var resolution = component.resolutions[r];
            var numprecincts = resolution.precinctParameters.numprecincts;
            for (; k < numprecincts;) {
              var packet = createPacket(resolution, k, l);
              k++;
              return packet;
            }
            k = 0;
          }
          i = 0;
        }
        l = 0;
      }
    };
  }
  function ResolutionPositionComponentLayerIterator(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var layersCount = tile.codingStyleDefaultParameters.layersCount;
    var componentsCount = siz.Csiz;
    var l, r, c, p;
    var maxDecompositionLevelsCount = 0;
    for (c = 0; c < componentsCount; c++) {
      var component = tile.components[c];
      maxDecompositionLevelsCount = Math.max(maxDecompositionLevelsCount,
        component.codingStyleParameters.decompositionLevelsCount);
    }
    var maxNumPrecinctsInLevel = new Int32Array(
      maxDecompositionLevelsCount + 1);
    for (r = 0; r <= maxDecompositionLevelsCount; ++r) {
      var maxNumPrecincts = 0;
      for (c = 0; c < componentsCount; ++c) {
        var resolutions = tile.components[c].resolutions;
        if (r < resolutions.length) {
          maxNumPrecincts = Math.max(maxNumPrecincts,
            resolutions[r].precinctParameters.numprecincts);
        }
      }
      maxNumPrecinctsInLevel[r] = maxNumPrecincts;
    }
    l = 0;
    r = 0;
    c = 0;
    p = 0;

    this.nextPacket = function JpxImage_nextPacket() {
      // Section B.12.1.3 Resolution-position-component-layer
      for (; r <= maxDecompositionLevelsCount; r++) {
        for (; p < maxNumPrecinctsInLevel[r]; p++) {
          for (; c < componentsCount; c++) {
            var component = tile.components[c];
            if (r > component.codingStyleParameters.decompositionLevelsCount) {
              continue;
            }
            var resolution = component.resolutions[r];
            var numprecincts = resolution.precinctParameters.numprecincts;
            if (p >= numprecincts) {
              continue;
            }
            for (; l < layersCount;) {
              var packet = createPacket(resolution, p, l);
              l++;
              return packet;
            }
            l = 0;
          }
          c = 0;
        }
        p = 0;
      }
    };
  }
  function PositionComponentResolutionLayerIterator(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var layersCount = tile.codingStyleDefaultParameters.layersCount;
    var componentsCount = siz.Csiz;
    var precinctsSizes = getPrecinctSizesInImageScale(tile);
    var precinctsIterationSizes = precinctsSizes;
    var l = 0, r = 0, c = 0, px = 0, py = 0;

    this.nextPacket = function JpxImage_nextPacket() {
      // Section B.12.1.4 Position-component-resolution-layer
      for (; py < precinctsIterationSizes.maxNumHigh; py++) {
        for (; px < precinctsIterationSizes.maxNumWide; px++) {
          for (; c < componentsCount; c++) {
            var component = tile.components[c];
            var decompositionLevelsCount =
              component.codingStyleParameters.decompositionLevelsCount;
            for (; r <= decompositionLevelsCount; r++) {
              var resolution = component.resolutions[r];
              var sizeInImageScale =
                precinctsSizes.components[c].resolutions[r];
              var k = getPrecinctIndexIfExist(
                px,
                py,
                sizeInImageScale,
                precinctsIterationSizes,
                resolution);
              if (k === null) {
                continue;
              }
              for (; l < layersCount;) {
                var packet = createPacket(resolution, k, l);
                l++;
                return packet;
              }
              l = 0;
            }
            r = 0;
          }
          c = 0;
        }
        px = 0;
      }
    };
  }
  function ComponentPositionResolutionLayerIterator(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var layersCount = tile.codingStyleDefaultParameters.layersCount;
    var componentsCount = siz.Csiz;
    var precinctsSizes = getPrecinctSizesInImageScale(tile);
    var l = 0, r = 0, c = 0, px = 0, py = 0;

    this.nextPacket = function JpxImage_nextPacket() {
      // Section B.12.1.5 Component-position-resolution-layer
      for (; c < componentsCount; ++c) {
        var component = tile.components[c];
        var precinctsIterationSizes = precinctsSizes.components[c];
        var decompositionLevelsCount =
          component.codingStyleParameters.decompositionLevelsCount;
        for (; py < precinctsIterationSizes.maxNumHigh; py++) {
          for (; px < precinctsIterationSizes.maxNumWide; px++) {
            for (; r <= decompositionLevelsCount; r++) {
              var resolution = component.resolutions[r];
              var sizeInImageScale = precinctsIterationSizes.resolutions[r];
              var k = getPrecinctIndexIfExist(
                px,
                py,
                sizeInImageScale,
                precinctsIterationSizes,
                resolution);
              if (k === null) {
                continue;
              }
              for (; l < layersCount;) {
                var packet = createPacket(resolution, k, l);
                l++;
                return packet;
              }
              l = 0;
            }
            r = 0;
          }
          px = 0;
        }
        py = 0;
      }
    };
  }
  function getPrecinctIndexIfExist(
    pxIndex, pyIndex, sizeInImageScale, precinctIterationSizes, resolution) {
    var posX = pxIndex * precinctIterationSizes.minWidth;
    var posY = pyIndex * precinctIterationSizes.minHeight;
    if (posX % sizeInImageScale.width !== 0 ||
        posY % sizeInImageScale.height !== 0) {
      return null;
    }
    var startPrecinctRowIndex =
      (posY / sizeInImageScale.width) *
      resolution.precinctParameters.numprecinctswide;
    return (posX / sizeInImageScale.height) + startPrecinctRowIndex;
  }
  function getPrecinctSizesInImageScale(tile) {
    var componentsCount = tile.components.length;
    var minWidth = Number.MAX_VALUE;
    var minHeight = Number.MAX_VALUE;
    var maxNumWide = 0;
    var maxNumHigh = 0;
    var sizePerComponent = new Array(componentsCount);
    for (var c = 0; c < componentsCount; c++) {
      var component = tile.components[c];
      var decompositionLevelsCount =
        component.codingStyleParameters.decompositionLevelsCount;
      var sizePerResolution = new Array(decompositionLevelsCount + 1);
      var minWidthCurrentComponent = Number.MAX_VALUE;
      var minHeightCurrentComponent = Number.MAX_VALUE;
      var maxNumWideCurrentComponent = 0;
      var maxNumHighCurrentComponent = 0;
      var scale = 1;
      for (var r = decompositionLevelsCount; r >= 0; --r) {
        var resolution = component.resolutions[r];
        var widthCurrentResolution =
          scale * resolution.precinctParameters.precinctWidth;
        var heightCurrentResolution =
          scale * resolution.precinctParameters.precinctHeight;
        minWidthCurrentComponent = Math.min(
          minWidthCurrentComponent,
          widthCurrentResolution);
        minHeightCurrentComponent = Math.min(
          minHeightCurrentComponent,
          heightCurrentResolution);
        maxNumWideCurrentComponent = Math.max(maxNumWideCurrentComponent,
          resolution.precinctParameters.numprecinctswide);
        maxNumHighCurrentComponent = Math.max(maxNumHighCurrentComponent,
          resolution.precinctParameters.numprecinctshigh);
        sizePerResolution[r] = {
          width: widthCurrentResolution,
          height: heightCurrentResolution
        };
        scale <<= 1;
      }
      minWidth = Math.min(minWidth, minWidthCurrentComponent);
      minHeight = Math.min(minHeight, minHeightCurrentComponent);
      maxNumWide = Math.max(maxNumWide, maxNumWideCurrentComponent);
      maxNumHigh = Math.max(maxNumHigh, maxNumHighCurrentComponent);
      sizePerComponent[c] = {
        resolutions: sizePerResolution,
        minWidth: minWidthCurrentComponent,
        minHeight: minHeightCurrentComponent,
        maxNumWide: maxNumWideCurrentComponent,
        maxNumHigh: maxNumHighCurrentComponent
      };
    }
    return {
      components: sizePerComponent,
      minWidth: minWidth,
      minHeight: minHeight,
      maxNumWide: maxNumWide,
      maxNumHigh: maxNumHigh
    };
  }
  function buildPackets(context) {
    var siz = context.SIZ;
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var componentsCount = siz.Csiz;
    // Creating resolutions and sub-bands for each component
    for (var c = 0; c < componentsCount; c++) {
      var component = tile.components[c];
      var decompositionLevelsCount =
        component.codingStyleParameters.decompositionLevelsCount;
      // Section B.5 Resolution levels and sub-bands
      var resolutions = [];
      var subbands = [];
      for (var r = 0; r <= decompositionLevelsCount; r++) {
        var blocksDimensions = getBlocksDimensions(context, component, r);
        var resolution = {};
        var scale = 1 << (decompositionLevelsCount - r);
        resolution.trx0 = Math.ceil(component.tcx0 / scale);
        resolution.try0 = Math.ceil(component.tcy0 / scale);
        resolution.trx1 = Math.ceil(component.tcx1 / scale);
        resolution.try1 = Math.ceil(component.tcy1 / scale);
        resolution.resLevel = r;
        buildPrecincts(context, resolution, blocksDimensions);
        resolutions.push(resolution);

        var subband;
        if (r === 0) {
          // one sub-band (LL) with last decomposition
          subband = {};
          subband.type = 'LL';
          subband.tbx0 = Math.ceil(component.tcx0 / scale);
          subband.tby0 = Math.ceil(component.tcy0 / scale);
          subband.tbx1 = Math.ceil(component.tcx1 / scale);
          subband.tby1 = Math.ceil(component.tcy1 / scale);
          subband.resolution = resolution;
          buildCodeblocks(context, subband, blocksDimensions);
          subbands.push(subband);
          resolution.subbands = [subband];
        } else {
          var bscale = 1 << (decompositionLevelsCount - r + 1);
          var resolutionSubbands = [];
          // three sub-bands (HL, LH and HH) with rest of decompositions
          subband = {};
          subband.type = 'HL';
          subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
          subband.tby0 = Math.ceil(component.tcy0 / bscale);
          subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
          subband.tby1 = Math.ceil(component.tcy1 / bscale);
          subband.resolution = resolution;
          buildCodeblocks(context, subband, blocksDimensions);
          subbands.push(subband);
          resolutionSubbands.push(subband);

          subband = {};
          subband.type = 'LH';
          subband.tbx0 = Math.ceil(component.tcx0 / bscale);
          subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
          subband.tbx1 = Math.ceil(component.tcx1 / bscale);
          subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
          subband.resolution = resolution;
          buildCodeblocks(context, subband, blocksDimensions);
          subbands.push(subband);
          resolutionSubbands.push(subband);

          subband = {};
          subband.type = 'HH';
          subband.tbx0 = Math.ceil(component.tcx0 / bscale - 0.5);
          subband.tby0 = Math.ceil(component.tcy0 / bscale - 0.5);
          subband.tbx1 = Math.ceil(component.tcx1 / bscale - 0.5);
          subband.tby1 = Math.ceil(component.tcy1 / bscale - 0.5);
          subband.resolution = resolution;
          buildCodeblocks(context, subband, blocksDimensions);
          subbands.push(subband);
          resolutionSubbands.push(subband);

          resolution.subbands = resolutionSubbands;
        }
      }
      component.resolutions = resolutions;
      component.subbands = subbands;
    }
    // Generate the packets sequence
    var progressionOrder = tile.codingStyleDefaultParameters.progressionOrder;
    switch (progressionOrder) {
      case 0:
        tile.packetsIterator =
          new LayerResolutionComponentPositionIterator(context);
        break;
      case 1:
        tile.packetsIterator =
          new ResolutionLayerComponentPositionIterator(context);
        break;
      case 2:
        tile.packetsIterator =
          new ResolutionPositionComponentLayerIterator(context);
        break;
      case 3:
        tile.packetsIterator =
          new PositionComponentResolutionLayerIterator(context);
        break;
      case 4:
        tile.packetsIterator =
          new ComponentPositionResolutionLayerIterator(context);
        break;
      default:
        throw new Error('JPX Error: Unsupported progression order ' +
                        progressionOrder);
    }
  }
  function parseTilePackets(context, data, offset, dataLength) {
    var position = 0;
    var buffer, bufferSize = 0, skipNextBit = false;
    function readBits(count) {
      while (bufferSize < count) {
        var b = data[offset + position];
        position++;
        if (skipNextBit) {
          buffer = (buffer << 7) | b;
          bufferSize += 7;
          skipNextBit = false;
        } else {
          buffer = (buffer << 8) | b;
          bufferSize += 8;
        }
        if (b === 0xFF) {
          skipNextBit = true;
        }
      }
      bufferSize -= count;
      return (buffer >>> bufferSize) & ((1 << count) - 1);
    }
    function skipMarkerIfEqual(value) {
      if (data[offset + position - 1] === 0xFF &&
          data[offset + position] === value) {
        skipBytes(1);
        return true;
      } else if (data[offset + position] === 0xFF &&
                 data[offset + position + 1] === value) {
        skipBytes(2);
        return true;
      }
      return false;
    }
    function skipBytes(count) {
      position += count;
    }
    function alignToByte() {
      bufferSize = 0;
      if (skipNextBit) {
        position++;
        skipNextBit = false;
      }
    }
    function readCodingpasses() {
      if (readBits(1) === 0) {
        return 1;
      }
      if (readBits(1) === 0) {
        return 2;
      }
      var value = readBits(2);
      if (value < 3) {
        return value + 3;
      }
      value = readBits(5);
      if (value < 31) {
        return value + 6;
      }
      value = readBits(7);
      return value + 37;
    }
    var tileIndex = context.currentTile.index;
    var tile = context.tiles[tileIndex];
    var sopMarkerUsed = context.COD.sopMarkerUsed;
    var ephMarkerUsed = context.COD.ephMarkerUsed;
    var packetsIterator = tile.packetsIterator;
    while (position < dataLength) {
      alignToByte();
      if (sopMarkerUsed && skipMarkerIfEqual(0x91)) {
        // Skip also marker segment length and packet sequence ID
        skipBytes(4);
      }
      var packet = packetsIterator.nextPacket();
      if (packet===undefined) {
        //No more packets. Stream is truncated.
        return;
      }
      if (!readBits(1)) {
        continue;
      }
      var layerNumber = packet.layerNumber;
      var queue = [], codeblock;
      for (var i = 0, ii = packet.codeblocks.length; i < ii; i++) {
        codeblock = packet.codeblocks[i];
        var precinct = codeblock.precinct;
        var codeblockColumn = codeblock.cbx - precinct.cbxMin;
        var codeblockRow = codeblock.cby - precinct.cbyMin;
        var codeblockIncluded = false;
        var firstTimeInclusion = false;
        var valueReady;
        if (codeblock['included'] !== undefined) {
          codeblockIncluded = !!readBits(1);
        } else {
          // reading inclusion tree
          precinct = codeblock.precinct;
          var inclusionTree, zeroBitPlanesTree;
          if (precinct['inclusionTree'] !== undefined) {
            inclusionTree = precinct.inclusionTree;
          } else {
            // building inclusion and zero bit-planes trees
            var width = precinct.cbxMax - precinct.cbxMin + 1;
            var height = precinct.cbyMax - precinct.cbyMin + 1;
            inclusionTree = new InclusionTree(width, height, layerNumber);
            zeroBitPlanesTree = new TagTree(width, height);
            precinct.inclusionTree = inclusionTree;
            precinct.zeroBitPlanesTree = zeroBitPlanesTree;
            for (var l=0; l < layerNumber; l++) {
              if (readBits(1) !== 0) {
                throw new Error('JPX Error: Invalid tag tree');
              }
            }
          }

          if (inclusionTree.reset(codeblockColumn, codeblockRow, layerNumber)) {
            while (true) {
              if (readBits(1)) {
                valueReady = !inclusionTree.nextLevel();
                if (valueReady) {
                  codeblock.included = true;
                  codeblockIncluded = firstTimeInclusion = true;
                  break;
                }
              } else {
                inclusionTree.incrementValue(layerNumber);
                break;
              }
            }
          }
        }
        if (!codeblockIncluded) {
          continue;
        }
        if (firstTimeInclusion) {
          zeroBitPlanesTree = precinct.zeroBitPlanesTree;
          zeroBitPlanesTree.reset(codeblockColumn, codeblockRow);
          while (true) {
            if (readBits(1)) {
              valueReady = !zeroBitPlanesTree.nextLevel();
              if (valueReady) {
                break;
              }
            } else {
              zeroBitPlanesTree.incrementValue();
            }
          }
          codeblock.zeroBitPlanes = zeroBitPlanesTree.value;
        }
        var codingpasses = readCodingpasses();
        while (readBits(1)) {
          codeblock.Lblock++;
        }
        var codingpassesLog2 = log2(codingpasses);
        // rounding down log2
        var bits = ((codingpasses < (1 << codingpassesLog2)) ?
          codingpassesLog2 - 1 : codingpassesLog2) + codeblock.Lblock;
        var codedDataLength = readBits(bits);
        queue.push({
          codeblock: codeblock,
          codingpasses: codingpasses,
          dataLength: codedDataLength
        });
      }
      alignToByte();
      if (ephMarkerUsed) {
        skipMarkerIfEqual(0x92);
      }
      while (queue.length > 0) {
        var packetItem = queue.shift();
        codeblock = packetItem.codeblock;
        if (codeblock['data'] === undefined) {
          codeblock.data = [];
        }
        codeblock.data.push({
          data: data,
          start: offset + position,
          end: offset + position + packetItem.dataLength,
          codingpasses: packetItem.codingpasses
        });
        position += packetItem.dataLength;
      }
    }
    return position;
  }
  function copyCoefficients(coefficients, levelWidth, levelHeight, subband,
                            delta, mb, reversible, segmentationSymbolUsed) {
    var x0 = subband.tbx0;
    var y0 = subband.tby0;
    var width = subband.tbx1 - subband.tbx0;
    var codeblocks = subband.codeblocks;
    var right = subband.type.charAt(0) === 'H' ? 1 : 0;
    var bottom = subband.type.charAt(1) === 'H' ? levelWidth : 0;

    for (var i = 0, ii = codeblocks.length; i < ii; ++i) {
      var codeblock = codeblocks[i];
      var blockWidth = codeblock.tbx1_ - codeblock.tbx0_;
      var blockHeight = codeblock.tby1_ - codeblock.tby0_;
      if (blockWidth === 0 || blockHeight === 0) {
        continue;
      }
      if (codeblock['data'] === undefined) {
        continue;
      }

      var bitModel, currentCodingpassType;
      bitModel = new BitModel(blockWidth, blockHeight, codeblock.subbandType,
                              codeblock.zeroBitPlanes, mb);
      currentCodingpassType = 2; // first bit plane starts from cleanup

      // collect data
      var data = codeblock.data, totalLength = 0, codingpasses = 0;
      var j, jj, dataItem;
      for (j = 0, jj = data.length; j < jj; j++) {
        dataItem = data[j];
        totalLength += dataItem.end - dataItem.start;
        codingpasses += dataItem.codingpasses;
      }
      var encodedData = new Int16Array(totalLength);
      var position = 0;
      for (j = 0, jj = data.length; j < jj; j++) {
        dataItem = data[j];
        var chunk = dataItem.data.subarray(dataItem.start, dataItem.end);
        encodedData.set(chunk, position);
        position += chunk.length;
      }
      // decoding the item
      var decoder = new ArithmeticDecoder(encodedData, 0, totalLength);
      bitModel.setDecoder(decoder);

      for (j = 0; j < codingpasses; j++) {
        switch (currentCodingpassType) {
          case 0:
            bitModel.runSignificancePropogationPass();
            break;
          case 1:
            bitModel.runMagnitudeRefinementPass();
            break;
          case 2:
            bitModel.runCleanupPass();
            if (segmentationSymbolUsed) {
              bitModel.checkSegmentationSymbol();
            }
            break;
        }
        currentCodingpassType = (currentCodingpassType + 1) % 3;
      }

      var offset = (codeblock.tbx0_ - x0) + (codeblock.tby0_ - y0) * width;
      var sign = bitModel.coefficentsSign;
      var magnitude = bitModel.coefficentsMagnitude;
      var bitsDecoded = bitModel.bitsDecoded;
      var magnitudeCorrection = reversible ? 0 : 0.5;
      var k, n, nb;
      position = 0;
      // Do the interleaving of Section F.3.3 here, so we do not need
      // to copy later. LL level is not interleaved, just copied.
      var interleave = (subband.type !== 'LL');
      for (j = 0; j < blockHeight; j++) {
        var row = (offset / width) | 0; // row in the non-interleaved subband
        var levelOffset = 2 * row * (levelWidth - width) + right + bottom;
        for (k = 0; k < blockWidth; k++) {
          n = magnitude[position];
          if (n !== 0) {
            n = (n + magnitudeCorrection) * delta;
            if (sign[position] !== 0) {
              n = -n;
            }
            nb = bitsDecoded[position];
            var pos = interleave ? (levelOffset + (offset << 1)) : offset;
            if (reversible && (nb >= mb)) {
              coefficients[pos] = n;
            } else {
              coefficients[pos] = n * (1 << (mb - nb));
            }
          }
          offset++;
          position++;
        }
        offset += width - blockWidth;
      }
    }
  }
  function transformTile(context, tile, c) {
    var component = tile.components[c];
    var codingStyleParameters = component.codingStyleParameters;
    var quantizationParameters = component.quantizationParameters;
    var decompositionLevelsCount =
      codingStyleParameters.decompositionLevelsCount;
    var spqcds = quantizationParameters.SPqcds;
    var scalarExpounded = quantizationParameters.scalarExpounded;
    var guardBits = quantizationParameters.guardBits;
    var segmentationSymbolUsed = codingStyleParameters.segmentationSymbolUsed;
    var precision = context.components[c].precision;

    var reversible = codingStyleParameters.reversibleTransformation;
    var transform = (reversible ? new ReversibleTransform() :
                                  new IrreversibleTransform());

    var subbandCoefficients = [];
    var b = 0;
    for (var i = 0; i <= decompositionLevelsCount; i++) {
      var resolution = component.resolutions[i];

      var width = resolution.trx1 - resolution.trx0;
      var height = resolution.try1 - resolution.try0;
      // Allocate space for the whole sublevel.
      var coefficients = new Float32Array(width * height);

      for (var j = 0, jj = resolution.subbands.length; j < jj; j++) {
        var mu, epsilon;
        if (!scalarExpounded) {
          // formula E-5
          mu = spqcds[0].mu;
          epsilon = spqcds[0].epsilon + (i > 0 ? 1 - i : 0);
        } else {
          mu = spqcds[b].mu;
          epsilon = spqcds[b].epsilon;
          b++;
        }

        var subband = resolution.subbands[j];
        var gainLog2 = SubbandsGainLog2[subband.type];

        // calulate quantization coefficient (Section E.1.1.1)
        var delta = (reversible ? 1 :
          Math.pow(2, precision + gainLog2 - epsilon) * (1 + mu / 2048));
        var mb = (guardBits + epsilon - 1);

        // In the first resolution level, copyCoefficients will fill the
        // whole array with coefficients. In the succeding passes,
        // copyCoefficients will consecutively fill in the values that belong
        // to the interleaved positions of the HL, LH, and HH coefficients.
        // The LL coefficients will then be interleaved in Transform.iterate().
        copyCoefficients(coefficients, width, height, subband, delta, mb,
                         reversible, segmentationSymbolUsed);
      }
      subbandCoefficients.push({
        width: width,
        height: height,
        items: coefficients
      });
    }

    var result = transform.calculate(subbandCoefficients,
                                     component.tcx0, component.tcy0);
    return {
      left: component.tcx0,
      top: component.tcy0,
      width: result.width,
      height: result.height,
      items: result.items
    };
  }
  function transformComponents(context) {
    var siz = context.SIZ;
    var components = context.components;
    var componentsCount = siz.Csiz;
    var resultImages = [];
    for (var i = 0, ii = context.tiles.length; i < ii; i++) {
      var tile = context.tiles[i];
      var transformedTiles = [];
      var c;
      for (c = 0; c < componentsCount; c++) {
        transformedTiles[c] = transformTile(context, tile, c);
      }
      var tile0 = transformedTiles[0];
      var out = new Int16Array(tile0.items.length * componentsCount);
      var result = {
        left: tile0.left,
        top: tile0.top,
        width: tile0.width,
        height: tile0.height,
        items: out
      };

      // Section G.2.2 Inverse multi component transform
      var shift, offset, max, min, maxK;
      var pos = 0, j, jj, y0, y1, y2, r, g, b, k, val;
      if (tile.codingStyleDefaultParameters.multipleComponentTransform) {
        var fourComponents = componentsCount === 4;
        var y0items = transformedTiles[0].items;
        var y1items = transformedTiles[1].items;
        var y2items = transformedTiles[2].items;
        var y3items = fourComponents ? transformedTiles[3].items : null;

        // HACK: The multiple component transform formulas below assume that
        // all components have the same precision. With this in mind, we
        // compute shift and offset only once.
        shift = components[0].precision - 8;
        offset = (128 << shift) + 0.5;
        max = 255 * (1 << shift);
        maxK = max * 0.5;
        min = -maxK;

        var component0 = tile.components[0];
        var alpha01 = componentsCount - 3;
        jj = y0items.length;
        if (!component0.codingStyleParameters.reversibleTransformation) {
          // inverse irreversible multiple component transform
          for (j = 0; j < jj; j++, pos += alpha01) {
            y0 = y0items[j] + offset;
            y1 = y1items[j];
            y2 = y2items[j];
            r = y0 + 1.402 * y2;
            g = y0 - 0.34413 * y1 - 0.71414 * y2;
            b = y0 + 1.772 * y1;
            out[pos++] = r <= 0 ? 0 : r >= max ? 255 : r >> shift;
            out[pos++] = g <= 0 ? 0 : g >= max ? 255 : g >> shift;
            out[pos++] = b <= 0 ? 0 : b >= max ? 255 : b >> shift;
          }
        } else {
          // inverse reversible multiple component transform
          for (j = 0; j < jj; j++, pos += alpha01) {
            y0 = y0items[j] + offset;
            y1 = y1items[j];
            y2 = y2items[j];
            g = y0 - ((y2 + y1) >> 2);
            r = g + y2;
            b = g + y1;
            out[pos++] = r <= 0 ? 0 : r >= max ? 255 : r >> shift;
            out[pos++] = g <= 0 ? 0 : g >= max ? 255 : g >> shift;
            out[pos++] = b <= 0 ? 0 : b >= max ? 255 : b >> shift;
          }
        }
        if (fourComponents) {
          for (j = 0, pos = 3; j < jj; j++, pos += 4) {
            k = y3items[j];
            out[pos] = k <= min ? 0 : k >= maxK ? 255 : (k + offset) >> shift;
          }
        }
      } else { // no multi-component transform
        for (c = 0; c < componentsCount; c++) {
          if (components[c].precision === 8){
            var items = transformedTiles[c].items;
            shift = components[c].precision - 8;
            offset = (128 << shift) + 0.5;
            max = (127.5 * (1 << shift));
            min = -max;
            for (pos = c, j = 0, jj = items.length; j < jj; j++) {
              val = items[j];
              out[pos] = val <= min ? 0 :
                         val >= max ? 255 : (val + offset) >> shift;
              pos += componentsCount;
            }
          }else{
            var isSigned = components[c].isSigned;
            var items = transformedTiles[c].items;

            if(isSigned){
              shift = 0;
              offset = 0;
            }else{
              shift = components[c].precision - 8;
              offset = (128 << shift) + 0.5;
            }

            for (pos = c, j = 0, jj = items.length; j < jj; j++) {
              val = items[j];
              out[pos] = (val + offset);
              pos += componentsCount;
            }
          }
        }
      }
      resultImages.push(result);
    }
    return resultImages;
  }
  function initializeTile(context, tileIndex) {
    var siz = context.SIZ;
    var componentsCount = siz.Csiz;
    var tile = context.tiles[tileIndex];
    for (var c = 0; c < componentsCount; c++) {
      var component = tile.components[c];
      var qcdOrQcc = (context.currentTile.QCC[c] !== undefined ?
        context.currentTile.QCC[c] : context.currentTile.QCD);
      component.quantizationParameters = qcdOrQcc;
      var codOrCoc = (context.currentTile.COC[c] !== undefined  ?
        context.currentTile.COC[c] : context.currentTile.COD);
      component.codingStyleParameters = codOrCoc;
    }
    tile.codingStyleDefaultParameters = context.currentTile.COD;
  }

  // Section B.10.2 Tag trees
  var TagTree = (function TagTreeClosure() {
    function TagTree(width, height) {
      var levelsLength = log2(Math.max(width, height)) + 1;
      this.levels = [];
      for (var i = 0; i < levelsLength; i++) {
        var level = {
          width: width,
          height: height,
          items: []
        };
        this.levels.push(level);
        width = Math.ceil(width / 2);
        height = Math.ceil(height / 2);
      }
    }
    TagTree.prototype = {
      reset: function TagTree_reset(i, j) {
        var currentLevel = 0, value = 0, level;
        while (currentLevel < this.levels.length) {
          level = this.levels[currentLevel];
          var index = i + j * level.width;
          if (level.items[index] !== undefined) {
            value = level.items[index];
            break;
          }
          level.index = index;
          i >>= 1;
          j >>= 1;
          currentLevel++;
        }
        currentLevel--;
        level = this.levels[currentLevel];
        level.items[level.index] = value;
        this.currentLevel = currentLevel;
        delete this.value;
      },
      incrementValue: function TagTree_incrementValue() {
        var level = this.levels[this.currentLevel];
        level.items[level.index]++;
      },
      nextLevel: function TagTree_nextLevel() {
        var currentLevel = this.currentLevel;
        var level = this.levels[currentLevel];
        var value = level.items[level.index];
        currentLevel--;
        if (currentLevel < 0) {
          this.value = value;
          return false;
        }

        this.currentLevel = currentLevel;
        level = this.levels[currentLevel];
        level.items[level.index] = value;
        return true;
      }
    };
    return TagTree;
  })();

  var InclusionTree = (function InclusionTreeClosure() {
    function InclusionTree(width, height,  defaultValue) {
      var levelsLength = log2(Math.max(width, height)) + 1;
      this.levels = [];
      for (var i = 0; i < levelsLength; i++) {
        var items = new Int16Array(width * height);
        for (var j = 0, jj = items.length; j < jj; j++) {
          items[j] = defaultValue;
        }

        var level = {
          width: width,
          height: height,
          items: items
        };
        this.levels.push(level);

        width = Math.ceil(width / 2);
        height = Math.ceil(height / 2);
      }
    }
    InclusionTree.prototype = {
      reset: function InclusionTree_reset(i, j, stopValue) {
        var currentLevel = 0;
        while (currentLevel < this.levels.length) {
          var level = this.levels[currentLevel];
          var index = i + j * level.width;
          level.index = index;
          var value = level.items[index];

          if (value === 0xFF) {
            break;
          }

          if (value > stopValue) {
            this.currentLevel = currentLevel;
            // already know about this one, propagating the value to top levels
            this.propagateValues();
            return false;
          }

          i >>= 1;
          j >>= 1;
          currentLevel++;
        }
        this.currentLevel = currentLevel - 1;
        return true;
      },
      incrementValue: function InclusionTree_incrementValue(stopValue) {
        var level = this.levels[this.currentLevel];
        level.items[level.index] = stopValue + 1;
        this.propagateValues();
      },
      propagateValues: function InclusionTree_propagateValues() {
        var levelIndex = this.currentLevel;
        var level = this.levels[levelIndex];
        var currentValue = level.items[level.index];
        while (--levelIndex >= 0) {
          level = this.levels[levelIndex];
          level.items[level.index] = currentValue;
        }
      },
      nextLevel: function InclusionTree_nextLevel() {
        var currentLevel = this.currentLevel;
        var level = this.levels[currentLevel];
        var value = level.items[level.index];
        level.items[level.index] = 0xFF;
        currentLevel--;
        if (currentLevel < 0) {
          return false;
        }

        this.currentLevel = currentLevel;
        level = this.levels[currentLevel];
        level.items[level.index] = value;
        return true;
      }
    };
    return InclusionTree;
  })();

  // Section D. Coefficient bit modeling
  var BitModel = (function BitModelClosure() {
    var UNIFORM_CONTEXT = 17;
    var RUNLENGTH_CONTEXT = 18;
    // Table D-1
    // The index is binary presentation: 0dddvvhh, ddd - sum of Di (0..4),
    // vv - sum of Vi (0..2), and hh - sum of Hi (0..2)
    var LLAndLHContextsLabel = new Uint8Array([
      0, 5, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 1, 6, 8, 0, 3, 7, 8, 0, 4,
      7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6,
      8, 0, 3, 7, 8, 0, 4, 7, 8, 0, 0, 0, 0, 0, 2, 6, 8, 0, 3, 7, 8, 0, 4, 7, 8
    ]);
    var HLContextLabel = new Uint8Array([
      0, 3, 4, 0, 5, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 1, 3, 4, 0, 6, 7, 7, 0, 8,
      8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3,
      4, 0, 6, 7, 7, 0, 8, 8, 8, 0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 7, 7, 0, 8, 8, 8
    ]);
    var HHContextLabel = new Uint8Array([
      0, 1, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 4, 5, 0, 4, 5, 5, 0, 5,
      5, 5, 0, 0, 0, 0, 0, 6, 7, 7, 0, 7, 7, 7, 0, 7, 7, 7, 0, 0, 0, 0, 0, 8, 8,
      8, 0, 8, 8, 8, 0, 8, 8, 8, 0, 0, 0, 0, 0, 8, 8, 8, 0, 8, 8, 8, 0, 8, 8, 8
    ]);

    function BitModel(width, height, subband, zeroBitPlanes, mb) {
      this.width = width;
      this.height = height;

      this.contextLabelTable = (subband === 'HH' ? HHContextLabel :
        (subband === 'HL' ? HLContextLabel : LLAndLHContextsLabel));

      var coefficientCount = width * height;

      // coefficients outside the encoding region treated as insignificant
      // add border state cells for significanceState
      this.neighborsSignificance = new Uint8Array(coefficientCount);
      this.coefficentsSign = new Uint8Array(coefficientCount);
      this.coefficentsMagnitude = mb > 14 ? new Uint32Array(coefficientCount) :
                                  mb > 6 ? new Uint16Array(coefficientCount) :
                                  new Uint8Array(coefficientCount);
      this.processingFlags = new Uint8Array(coefficientCount);

      var bitsDecoded = new Uint8Array(coefficientCount);
      if (zeroBitPlanes !== 0) {
        for (var i = 0; i < coefficientCount; i++) {
          bitsDecoded[i] = zeroBitPlanes;
        }
      }
      this.bitsDecoded = bitsDecoded;

      this.reset();
    }

    BitModel.prototype = {
      setDecoder: function BitModel_setDecoder(decoder) {
        this.decoder = decoder;
      },
      reset: function BitModel_reset() {
        // We have 17 contexts that are accessed via context labels,
        // plus the uniform and runlength context.
        this.contexts = new Int8Array(19);

        // Contexts are packed into 1 byte:
        // highest 7 bits carry the index, lowest bit carries mps
        this.contexts[0] = (4 << 1) | 0;
        this.contexts[UNIFORM_CONTEXT] = (46 << 1) | 0;
        this.contexts[RUNLENGTH_CONTEXT] = (3 << 1) | 0;
      },
      setNeighborsSignificance:
        function BitModel_setNeighborsSignificance(row, column, index) {
        var neighborsSignificance = this.neighborsSignificance;
        var width = this.width, height = this.height;
        var left = (column > 0);
        var right = (column + 1 < width);
        var i;

        if (row > 0) {
          i = index - width;
          if (left) {
            neighborsSignificance[i - 1] += 0x10;
          }
          if (right) {
            neighborsSignificance[i + 1] += 0x10;
          }
          neighborsSignificance[i] += 0x04;
        }

        if (row + 1 < height) {
          i = index + width;
          if (left) {
            neighborsSignificance[i - 1] += 0x10;
          }
          if (right) {
            neighborsSignificance[i + 1] += 0x10;
          }
          neighborsSignificance[i] += 0x04;
        }

        if (left) {
          neighborsSignificance[index - 1] += 0x01;
        }
        if (right) {
          neighborsSignificance[index + 1] += 0x01;
        }
        neighborsSignificance[index] |= 0x80;
      },
      runSignificancePropogationPass:
        function BitModel_runSignificancePropogationPass() {
        var decoder = this.decoder;
        var width = this.width, height = this.height;
        var coefficentsMagnitude = this.coefficentsMagnitude;
        var coefficentsSign = this.coefficentsSign;
        var neighborsSignificance = this.neighborsSignificance;
        var processingFlags = this.processingFlags;
        var contexts = this.contexts;
        var labels = this.contextLabelTable;
        var bitsDecoded = this.bitsDecoded;
        var processedInverseMask = ~1;
        var processedMask = 1;
        var firstMagnitudeBitMask = 2;

        for (var i0 = 0; i0 < height; i0 += 4) {
          for (var j = 0; j < width; j++) {
            var index = i0 * width + j;
            for (var i1 = 0; i1 < 4; i1++, index += width) {
              var i = i0 + i1;
              if (i >= height) {
                break;
              }
              // clear processed flag first
              processingFlags[index] &= processedInverseMask;

              if (coefficentsMagnitude[index] ||
                  !neighborsSignificance[index]) {
                continue;
              }

              var contextLabel = labels[neighborsSignificance[index]];
              var decision = decoder.readBit(contexts, contextLabel);
              if (decision) {
                var sign = this.decodeSignBit(i, j, index);
                coefficentsSign[index] = sign;
                coefficentsMagnitude[index] = 1;
                this.setNeighborsSignificance(i, j, index);
                processingFlags[index] |= firstMagnitudeBitMask;
              }
              bitsDecoded[index]++;
              processingFlags[index] |= processedMask;
            }
          }
        }
      },
      decodeSignBit: function BitModel_decodeSignBit(row, column, index) {
        var width = this.width, height = this.height;
        var coefficentsMagnitude = this.coefficentsMagnitude;
        var coefficentsSign = this.coefficentsSign;
        var contribution, sign0, sign1, significance1;
        var contextLabel, decoded;

        // calculate horizontal contribution
        significance1 = (column > 0 && coefficentsMagnitude[index - 1] !== 0);
        if (column + 1 < width && coefficentsMagnitude[index + 1] !== 0) {
          sign1 = coefficentsSign[index + 1];
          if (significance1) {
            sign0 = coefficentsSign[index - 1];
            contribution = 1 - sign1 - sign0;
          } else {
            contribution = 1 - sign1 - sign1;
          }
        } else if (significance1) {
          sign0 = coefficentsSign[index - 1];
          contribution = 1 - sign0 - sign0;
        } else {
          contribution = 0;
        }
        var horizontalContribution = 3 * contribution;

        // calculate vertical contribution and combine with the horizontal
        significance1 = (row > 0 && coefficentsMagnitude[index - width] !== 0);
        if (row + 1 < height && coefficentsMagnitude[index + width] !== 0) {
          sign1 = coefficentsSign[index + width];
          if (significance1) {
            sign0 = coefficentsSign[index - width];
            contribution = 1 - sign1 - sign0 + horizontalContribution;
          } else {
            contribution = 1 - sign1 - sign1 + horizontalContribution;
          }
        } else if (significance1) {
          sign0 = coefficentsSign[index - width];
          contribution = 1 - sign0 - sign0 + horizontalContribution;
        } else {
          contribution = horizontalContribution;
        }

        if (contribution >= 0) {
          contextLabel = 9 + contribution;
          decoded = this.decoder.readBit(this.contexts, contextLabel);
        } else {
          contextLabel = 9 - contribution;
          decoded = this.decoder.readBit(this.contexts, contextLabel) ^ 1;
        }
        return decoded;
      },
      runMagnitudeRefinementPass:
        function BitModel_runMagnitudeRefinementPass() {
        var decoder = this.decoder;
        var width = this.width, height = this.height;
        var coefficentsMagnitude = this.coefficentsMagnitude;
        var neighborsSignificance = this.neighborsSignificance;
        var contexts = this.contexts;
        var bitsDecoded = this.bitsDecoded;
        var processingFlags = this.processingFlags;
        var processedMask = 1;
        var firstMagnitudeBitMask = 2;
        var length = width * height;
        var width4 = width * 4;

        for (var index0 = 0, indexNext; index0 < length; index0 = indexNext) {
          indexNext = Math.min(length, index0 + width4);
          for (var j = 0; j < width; j++) {
            for (var index = index0 + j; index < indexNext; index += width) {

              // significant but not those that have just become
              if (!coefficentsMagnitude[index] ||
                (processingFlags[index] & processedMask) !== 0) {
                continue;
              }

              var contextLabel = 16;
              if ((processingFlags[index] & firstMagnitudeBitMask) !== 0) {
                processingFlags[index] ^= firstMagnitudeBitMask;
                // first refinement
               var significance = neighborsSignificance[index] & 127;
               contextLabel = significance === 0 ? 15 : 14;
              }

              var bit = decoder.readBit(contexts, contextLabel);
              coefficentsMagnitude[index] =
                (coefficentsMagnitude[index] << 1) | bit;
              bitsDecoded[index]++;
              processingFlags[index] |= processedMask;
            }
          }
        }
      },
      runCleanupPass: function BitModel_runCleanupPass() {
        var decoder = this.decoder;
        var width = this.width, height = this.height;
        var neighborsSignificance = this.neighborsSignificance;
        var coefficentsMagnitude = this.coefficentsMagnitude;
        var coefficentsSign = this.coefficentsSign;
        var contexts = this.contexts;
        var labels = this.contextLabelTable;
        var bitsDecoded = this.bitsDecoded;
        var processingFlags = this.processingFlags;
        var processedMask = 1;
        var firstMagnitudeBitMask = 2;
        var oneRowDown = width;
        var twoRowsDown = width * 2;
        var threeRowsDown = width * 3;
        var iNext;
        for (var i0 = 0; i0 < height; i0 = iNext) {
          iNext = Math.min(i0 + 4, height);
          var indexBase = i0 * width;
          var checkAllEmpty = i0 + 3 < height;
          for (var j = 0; j < width; j++) {
            var index0 = indexBase + j;
            // using the property: labels[neighborsSignificance[index]] === 0
            // when neighborsSignificance[index] === 0
            var allEmpty = (checkAllEmpty &&
              processingFlags[index0] === 0 &&
              processingFlags[index0 + oneRowDown] === 0 &&
              processingFlags[index0 + twoRowsDown] === 0 &&
              processingFlags[index0 + threeRowsDown] === 0 &&
              neighborsSignificance[index0] === 0 &&
              neighborsSignificance[index0 + oneRowDown] === 0 &&
              neighborsSignificance[index0 + twoRowsDown] === 0 &&
              neighborsSignificance[index0 + threeRowsDown] === 0);
            var i1 = 0, index = index0;
            var i = i0, sign;
            if (allEmpty) {
              var hasSignificantCoefficent =
                decoder.readBit(contexts, RUNLENGTH_CONTEXT);
              if (!hasSignificantCoefficent) {
                bitsDecoded[index0]++;
                bitsDecoded[index0 + oneRowDown]++;
                bitsDecoded[index0 + twoRowsDown]++;
                bitsDecoded[index0 + threeRowsDown]++;
                continue; // next column
              }
              i1 = (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
                    decoder.readBit(contexts, UNIFORM_CONTEXT);
              if (i1 !== 0) {
                i = i0 + i1;
                index += i1 * width;
              }

              sign = this.decodeSignBit(i, j, index);
              coefficentsSign[index] = sign;
              coefficentsMagnitude[index] = 1;
              this.setNeighborsSignificance(i, j, index);
              processingFlags[index] |= firstMagnitudeBitMask;

              index = index0;
              for (var i2 = i0; i2 <= i; i2++, index += width) {
                bitsDecoded[index]++;
              }

              i1++;
            }
            for (i = i0 + i1; i < iNext; i++, index += width) {
              if (coefficentsMagnitude[index] ||
                (processingFlags[index] & processedMask) !== 0) {
                continue;
              }

              var contextLabel = labels[neighborsSignificance[index]];
              var decision = decoder.readBit(contexts, contextLabel);
              if (decision === 1) {
                sign = this.decodeSignBit(i, j, index);
                coefficentsSign[index] = sign;
                coefficentsMagnitude[index] = 1;
                this.setNeighborsSignificance(i, j, index);
                processingFlags[index] |= firstMagnitudeBitMask;
              }
              bitsDecoded[index]++;
            }
          }
        }
      },
      checkSegmentationSymbol: function BitModel_checkSegmentationSymbol() {
        var decoder = this.decoder;
        var contexts = this.contexts;
        var symbol = (decoder.readBit(contexts, UNIFORM_CONTEXT) << 3) |
                     (decoder.readBit(contexts, UNIFORM_CONTEXT) << 2) |
                     (decoder.readBit(contexts, UNIFORM_CONTEXT) << 1) |
                      decoder.readBit(contexts, UNIFORM_CONTEXT);
        if (symbol !== 0xA) {
          throw new Error('JPX Error: Invalid segmentation symbol');
        }
      }
    };

    return BitModel;
  })();

  // Section F, Discrete wavelet transformation
  var Transform = (function TransformClosure() {
    function Transform() {}

    Transform.prototype.calculate =
      function transformCalculate(subbands, u0, v0) {
      var ll = subbands[0];
      for (var i = 1, ii = subbands.length; i < ii; i++) {
        ll = this.iterate(ll, subbands[i], u0, v0);
      }
      return ll;
    };
    Transform.prototype.extend = function extend(buffer, offset, size) {
      // Section F.3.7 extending... using max extension of 4
      var i1 = offset - 1, j1 = offset + 1;
      var i2 = offset + size - 2, j2 = offset + size;
      buffer[i1--] = buffer[j1++];
      buffer[j2++] = buffer[i2--];
      buffer[i1--] = buffer[j1++];
      buffer[j2++] = buffer[i2--];
      buffer[i1--] = buffer[j1++];
      buffer[j2++] = buffer[i2--];
      buffer[i1] = buffer[j1];
      buffer[j2] = buffer[i2];
    };
    Transform.prototype.iterate = function Transform_iterate(ll, hl_lh_hh,
                                                             u0, v0) {
      var llWidth = ll.width, llHeight = ll.height, llItems = ll.items;
      var width = hl_lh_hh.width;
      var height = hl_lh_hh.height;
      var items = hl_lh_hh.items;
      var i, j, k, l, u, v;

      // Interleave LL according to Section F.3.3
      for (k = 0, i = 0; i < llHeight; i++) {
        l = i * 2 * width;
        for (j = 0; j < llWidth; j++, k++, l += 2) {
          items[l] = llItems[k];
        }
      }
      // The LL band is not needed anymore.
      llItems = ll.items = null;

      var bufferPadding = 4;
      var rowBuffer = new Float32Array(width + 2 * bufferPadding);

      // Section F.3.4 HOR_SR
      if (width === 1) {
        // if width = 1, when u0 even keep items as is, when odd divide by 2
        if ((u0 & 1) !== 0) {
          for (v = 0, k = 0; v < height; v++, k += width) {
            items[k] *= 0.5;
          }
        }
      } else {
        for (v = 0, k = 0; v < height; v++, k += width) {
          rowBuffer.set(items.subarray(k, k + width), bufferPadding);

          this.extend(rowBuffer, bufferPadding, width);
          this.filter(rowBuffer, bufferPadding, width);

          items.set(
            rowBuffer.subarray(bufferPadding, bufferPadding + width),
            k);
        }
      }

      // Accesses to the items array can take long, because it may not fit into
      // CPU cache and has to be fetched from main memory. Since subsequent
      // accesses to the items array are not local when reading columns, we
      // have a cache miss every time. To reduce cache misses, get up to
      // 'numBuffers' items at a time and store them into the individual
      // buffers. The colBuffers should be small enough to fit into CPU cache.
      var numBuffers = 16;
      var colBuffers = [];
      for (i = 0; i < numBuffers; i++) {
        colBuffers.push(new Float32Array(height + 2 * bufferPadding));
      }
      var b, currentBuffer = 0;
      ll = bufferPadding + height;

      // Section F.3.5 VER_SR
      if (height === 1) {
          // if height = 1, when v0 even keep items as is, when odd divide by 2
        if ((v0 & 1) !== 0) {
          for (u = 0; u < width; u++) {
            items[u] *= 0.5;
          }
        }
      } else {
        for (u = 0; u < width; u++) {
          // if we ran out of buffers, copy several image columns at once
          if (currentBuffer === 0) {
            numBuffers = Math.min(width - u, numBuffers);
            for (k = u, l = bufferPadding; l < ll; k += width, l++) {
              for (b = 0; b < numBuffers; b++) {
                colBuffers[b][l] = items[k + b];
              }
            }
            currentBuffer = numBuffers;
          }

          currentBuffer--;
          var buffer = colBuffers[currentBuffer];
          this.extend(buffer, bufferPadding, height);
          this.filter(buffer, bufferPadding, height);

          // If this is last buffer in this group of buffers, flush all buffers.
          if (currentBuffer === 0) {
            k = u - numBuffers + 1;
            for (l = bufferPadding; l < ll; k += width, l++) {
              for (b = 0; b < numBuffers; b++) {
                items[k + b] = colBuffers[b][l];
              }
            }
          }
        }
      }

      return {
        width: width,
        height: height,
        items: items
      };
    };
    return Transform;
  })();

  // Section 3.8.2 Irreversible 9-7 filter
  var IrreversibleTransform = (function IrreversibleTransformClosure() {
    function IrreversibleTransform() {
      Transform.call(this);
    }

    IrreversibleTransform.prototype = Object.create(Transform.prototype);
    IrreversibleTransform.prototype.filter =
      function irreversibleTransformFilter(x, offset, length) {
      var len = length >> 1;
      offset = offset | 0;
      var j, n, current, next;

      var alpha = -1.586134342059924;
      var beta = -0.052980118572961;
      var gamma = 0.882911075530934;
      var delta = 0.443506852043971;
      var K = 1.230174104914001;
      var K_ = 1 / K;

      // step 1 is combined with step 3

      // step 2
      j = offset - 3;
      for (n = len + 4; n--; j += 2) {
        x[j] *= K_;
      }

      // step 1 & 3
      j = offset - 2;
      current = delta * x[j -1];
      for (n = len + 3; n--; j += 2) {
        next = delta * x[j + 1];
        x[j] = K * x[j] - current - next;
        if (n--) {
          j += 2;
          current = delta * x[j + 1];
          x[j] = K * x[j] - current - next;
        } else {
          break;
        }
      }

      // step 4
      j = offset - 1;
      current = gamma * x[j - 1];
      for (n = len + 2; n--; j += 2) {
        next = gamma * x[j + 1];
        x[j] -= current + next;
        if (n--) {
          j += 2;
          current = gamma * x[j + 1];
          x[j] -= current + next;
        } else {
          break;
        }
      }

      // step 5
      j = offset;
      current = beta * x[j - 1];
      for (n = len + 1; n--; j += 2) {
        next = beta * x[j + 1];
        x[j] -= current + next;
        if (n--) {
          j += 2;
          current = beta * x[j + 1];
          x[j] -= current + next;
        } else {
          break;
        }
      }

      // step 6
      if (len !== 0) {
        j = offset + 1;
        current = alpha * x[j - 1];
        for (n = len; n--; j += 2) {
          next = alpha * x[j + 1];
          x[j] -= current + next;
          if (n--) {
            j += 2;
            current = alpha * x[j + 1];
            x[j] -= current + next;
          } else {
            break;
          }
        }
      }
    };

    return IrreversibleTransform;
  })();

  // Section 3.8.1 Reversible 5-3 filter
  var ReversibleTransform = (function ReversibleTransformClosure() {
    function ReversibleTransform() {
      Transform.call(this);
    }

    ReversibleTransform.prototype = Object.create(Transform.prototype);
    ReversibleTransform.prototype.filter =
      function reversibleTransformFilter(x, offset, length) {
      var len = length >> 1;
      offset = offset | 0;
      var j, n;

      for (j = offset, n = len + 1; n--; j += 2) {
        x[j] -= (x[j - 1] + x[j + 1] + 2) >> 2;
      }

      for (j = offset + 1, n = len; n--; j += 2) {
        x[j] += (x[j - 1] + x[j + 1]) >> 1;
      }
    };

    return ReversibleTransform;
  })();

  return JpxImage;
})();