File erlang_actor.rb
has 899 lines of code (exceeds 250 allowed). Consider refactoring. Open
require 'set'
require 'concurrent/atomic/count_down_latch'
require 'concurrent/concern/logging'
require 'concurrent/edge/channel'
require 'concurrent/errors'
Class AbstractActor
has 30 methods (exceeds 20 allowed). Consider refactoring. Open
class AbstractActor < Synchronization::Object
include EnvironmentConstants
include Concern::Logging
safe_initialization!
Method ask
has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring. Open
def ask(message, timeout, timeout_value)
log DEBUG, @Pid, asked: message
if @Terminated.resolved?
raise NoActor.new(@Pid)
else
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method inner_run
has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring. Open
def inner_run(*args, &body)
first = !!body
future_body = -> message, _actor do
kind, reason, value =
if message.is_a?(::Array) && message.first == TERMINATE
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method canonical_rules
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def canonical_rules(rules, timeout, timeout_value, given_block)
block = given_block || -> v { v }
case rules.size
when 0
rules.push(on(ANY, &block))
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method internal_receive
has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring. Open
def internal_receive
raise if @behaviour.empty?
rules_matcher = Or[*@behaviour.map(&:first)]
matcher = -> m { m.is_a?(Ask) ? rules_matcher === m.message : rules_matcher === m }
start = nil
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method demonitor
has a Cognitive Complexity of 16 (exceeds 5 allowed). Consider refactoring. Open
def demonitor(reference, *options)
info = options.delete :info
flush = options.delete :flush
raise ArgumentError, "bad options #{options}" unless options.empty?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method consume_exit
has a Cognitive Complexity of 14 (exceeds 5 allowed). Consider refactoring. Open
def consume_exit(exit_message)
from, reason = exit_message
if !exit_message.link_terminated || @Linked.delete(from)
case reason
when :normal
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method inner_run
has 40 lines of code (exceeds 25 allowed). Consider refactoring. Open
def inner_run(*args, &body)
first = !!body
future_body = -> message, _actor do
kind, reason, value =
if message.is_a?(::Array) && message.first == TERMINATE
Method receive
has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring. Open
def receive(*rules, timeout: nil, timeout_value: nil, &given_block)
clean_reply
err = canonical_rules rules, timeout, timeout_value, given_block
raise err if err
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method internal_receive
has 33 lines of code (exceeds 25 allowed). Consider refactoring. Open
def internal_receive
raise if @behaviour.empty?
rules_matcher = Or[*@behaviour.map(&:first)]
matcher = -> m { m.is_a?(Ask) ? rules_matcher === m.message : rules_matcher === m }
start = nil
Method consume_signal
has 32 lines of code (exceeds 25 allowed). Consider refactoring. Open
def consume_signal(message)
if AbstractSignal === message
case message
when Ask
@reply = message.probe
Method canonical_rules
has 27 lines of code (exceeds 25 allowed). Consider refactoring. Open
def canonical_rules(rules, timeout, timeout_value, given_block)
block = given_block || -> v { v }
case rules.size
when 0
rules.push(on(ANY, &block))
Method consume_signal
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def consume_signal(message)
if AbstractSignal === message
case message
when Ask
@reply = message.probe
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method link
has a Cognitive Complexity of 8 (exceeds 5 allowed). Consider refactoring. Open
def link(pid)
return true if pid == @Pid
if @Linked.add? pid
pid.tell Link.new(@Pid)
if pid.terminated.resolved?
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method create
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
def self.create(type, channel, environment, name, executor)
Method tell
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def tell(message, timeout = nil)
log DEBUG, @Pid, told: message
if (mailbox = @Mailbox)
timed_out = mailbox.push message, timeout
timeout ? timed_out : @Pid
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method after_termination
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def after_termination(final_reason)
log DEBUG, @Pid, terminated: final_reason
clean_reply NoActor.new(@Pid)
while true
message = @Mailbox.try_pop NOTHING
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method apply_behaviour
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def apply_behaviour(message)
@behaviour.each do |rule, job|
if rule === message
@behaviour = [] unless @keep_behaviour
return eval_task(message, job)
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Method initial_signal_consumption
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def initial_signal_consumption
while true
message = @Mailbox.try_pop
break unless message
consume_signal(message) == NOTHING or raise 'it was not consumable signal'
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
module HasReference
include HasFrom
# @return [Reference]
attr_reader :reference
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 32.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
module HasReason
include HasFrom
# @return [Object]
attr_reader :reason
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 32.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76