jenkinsci/hpe-application-automation-tools-plugin

View on GitHub

Showing 716 of 716 total issues

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        ErrorsPerSecond, PercentileTRT, AverageTRT, Bad;

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Move constants defined in this interfaces to another class or enum.
Open

public interface EntityRelation {

According to Joshua Bloch, author of "Effective Java":

The constant interface pattern is a poor use of interfaces.

That a class uses some constants internally is an implementation detail.

Implementing a constant interface causes this implementation detail to leak into the class's exported API. It is of no consequence to the users of a class that the class implements a constant interface. In fact, it may even confuse them. Worse, it represents a commitment: if in a future release the class is modified so that it no longer needs to use the constants, it still must implement the interface to ensure binary compatibility. If a nonfinal class implements a constant interface,

all of its subclasses will have their namespaces polluted by the constants in the interface.

This rule raises an issue when an interface consists solely of fields, without any other members.

Noncompliant Code Example

interface Status {                      // Noncompliant
   int OPEN = 1;
   int CLOSED = 2;
}

Compliant Solution

public enum Status {                    // Compliant
  OPEN,
  CLOSED;
}

or

public final class Status {             // Compliant
   public static final int OPEN = 1;
   public static final int CLOSED = 2;
}

Use try-with-resources or close this "BufferedReader" in a "finally" clause.
Open

        BufferedReader br = new BufferedReader(new FileReader(indexFile));

Connections, streams, files, and other classes that implement the Closeable interface or its super-interface, AutoCloseable, needs to be closed after use. Further, that close call must be made in a finally block otherwise an exception could keep the call from being made. Preferably, when class implements AutoCloseable, resource should be created using "try-with-resources" pattern and will be closed automatically.

Failure to properly close resources will result in a resource leak which could bring first the application and then perhaps the box the application is on to their knees.

Noncompliant Code Example

private void readTheFile() throws IOException {
  Path path = Paths.get(this.fileName);
  BufferedReader reader = Files.newBufferedReader(path, this.charset);
  // ...
  reader.close();  // Noncompliant
  // ...
  Files.lines("input.txt").forEach(System.out::println); // Noncompliant: The stream needs to be closed
}

private void doSomething() {
  OutputStream stream = null;
  try {
    for (String property : propertyList) {
      stream = new FileOutputStream("myfile.txt");  // Noncompliant
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();  // Multiple streams were opened. Only the last is closed.
  }
}

Compliant Solution

private void readTheFile(String fileName) throws IOException {
    Path path = Paths.get(fileName);
    try (BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8)) {
      reader.readLine();
      // ...
    }
    // ..
    try (Stream<String> input = Files.lines("input.txt"))  {
      input.forEach(System.out::println);
    }
}

private void doSomething() {
  OutputStream stream = null;
  try {
    stream = new FileOutputStream("myfile.txt");
    for (String property : propertyList) {
      // ...
    }
  } catch (Exception e) {
    // ...
  } finally {
    stream.close();
  }
}

Exceptions

Instances of the following classes are ignored by this rule because close has no effect:

  • java.io.ByteArrayOutputStream
  • java.io.ByteArrayInputStream
  • java.io.CharArrayReader
  • java.io.CharArrayWriter
  • java.io.StringReader
  • java.io.StringWriter

Java 7 introduced the try-with-resources statement, which implicitly closes Closeables. All resources opened in a try-with-resources statement are ignored by this rule.

try (BufferedReader br = new BufferedReader(new FileReader(fileName))) {
  //...
}
catch ( ... ) {
  //...
}

See

Either remove or fill this block of code.
Open

        }catch (Exception e) {

Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.

Noncompliant Code Example

for (int i = 0; i < 42; i++){}  // Empty on purpose or missing piece of code ?

Exceptions

When a block contains a comment, this block is not considered to be empty unless it is a synchronized block. synchronized blocks are still considered empty even with comments because they can still affect program flow.

Replace this call to "replaceAll()" by a call to the "replace()" method.
Open

            execDateTime = execDateTime.replaceAll("T", " ");

The underlying implementation of String::replaceAll calls the java.util.regex.Pattern.compile() method each time it is called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.

When String::replaceAll is used, the first argument should be a real regular expression. If it’s not the case, String::replace does exactly the same thing as String::replaceAll without the performance drawback of the regex.

This rule raises an issue for each String::replaceAll used with a String as first parameter which doesn’t contains special regex character or pattern.

Noncompliant Code Example

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("Bob is", "It's"); // Noncompliant
changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant

Compliant Solution

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replace("Bob is", "It's");
changed = changed.replace("...", ";");

Or, with a regex:

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("\\w*\\sis", "It's");
changed = changed.replaceAll("\\.{3}", ";");

See

  • {rule:java:S4248} - Regex patterns should not be created needlessly

This block of commented-out lines of code should be removed.
Open

        return new SimpleDateFormat(TIME_FORMAT); // m_timeFormatter;

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Change the visibility of this constructor to "protected".
Open

    public LrScenario() {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Either remove or fill this block of code.
Open

            } catch (Exception e) {

Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.

Noncompliant Code Example

for (int i = 0; i < 42; i++){}  // Empty on purpose or missing piece of code ?

Exceptions

When a block contains a comment, this block is not considered to be empty unless it is a synchronized block. synchronized blocks are still considered empty even with comments because they can still affect program flow.

Replace this use of System.out or System.err by a logger.
Open

        System.out.println(message);

When logging a message there are several important requirements which must be fulfilled:

  • The user must be able to easily retrieve the logs
  • The format of all logged message must be uniform to allow the user to easily read the log
  • Logged data must actually be recorded
  • Sensitive data must only be logged securely

If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.

Noncompliant Code Example

System.out.println("My Message");  // Noncompliant

Compliant Solution

logger.log("My Message");

See

Move constants defined in this interfaces to another class or enum.
Open

public interface AlmCommonProperties {

According to Joshua Bloch, author of "Effective Java":

The constant interface pattern is a poor use of interfaces.

That a class uses some constants internally is an implementation detail.

Implementing a constant interface causes this implementation detail to leak into the class's exported API. It is of no consequence to the users of a class that the class implements a constant interface. In fact, it may even confuse them. Worse, it represents a commitment: if in a future release the class is modified so that it no longer needs to use the constants, it still must implement the interface to ensure binary compatibility. If a nonfinal class implements a constant interface,

all of its subclasses will have their namespaces polluted by the constants in the interface.

This rule raises an issue when an interface consists solely of fields, without any other members.

Noncompliant Code Example

interface Status {                      // Noncompliant
   int OPEN = 1;
   int CLOSED = 2;
}

Compliant Solution

public enum Status {                    // Compliant
  OPEN,
  CLOSED;
}

or

public final class Status {             // Compliant
   public static final int OPEN = 1;
   public static final int CLOSED = 2;
}

Remove this unused "projectActionList" private field.
Open

    private final List<TestResultProjectAction> projectActionList;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

This block of commented-out lines of code should be removed.
Open

            //                            .size());

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Remove this unused "LOGGER" private field.
Open

    private static final Logger LOGGER = Logger

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Replace the synchronized class "StringBuffer" by an unsynchronized one such as "StringBuilder".
Open

        StringBuffer temp = new StringBuffer(source);

Early classes of the Java API, such as Vector, Hashtable and StringBuffer, were synchronized to make them thread-safe. Unfortunately, synchronization has a big negative impact on performance, even when using these collections from a single thread.

It is better to use their new unsynchronized replacements:

  • ArrayList or LinkedList instead of Vector
  • Deque instead of Stack
  • HashMap instead of Hashtable
  • StringBuilder instead of StringBuffer

Even when used in synchronized context, you should think twice before using it, since it's usage can be tricky. If you are confident the usage is legitimate, you can safely ignore this warning.

Noncompliant Code Example

Vector cats = new Vector();

Compliant Solution

ArrayList cats = new ArrayList();

Exceptions

Use of those synchronized classes is ignored in the signatures of overriding methods.

@Override
public Vector getCats() {...}

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        Failed, Passed, NoData, bad;

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Define a constant instead of duplicating this literal "Failed to create Entity:" 4 times.
Open

                _logger.log("Failed to create Entity:" + entity.toString());

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Update this method so that its implementation is not identical to "getDisplayName" on line 61.
Open

    public String getName() {

When two methods have the same implementation, either it was a mistake - something else was intended - or the duplication was intentional, but may be confusing to maintainers. In the latter case, one implementation should invoke the other. Numerical and string literals are not taken into account.

Noncompliant Code Example

private final static String CODE = "bounteous";

public String calculateCode() {
  doTheThing();
  return CODE;
}

public String getName() {  // Noncompliant
  doTheThing();
  return CODE;
}

Compliant Solution

private final static String CODE = "bounteous";

public String getCode() {
  doTheThing();
  return CODE;
}

public String getName() {
  return getCode();
}

Exceptions

Methods that are not accessors (getters and setters), with fewer than 2 statements are ignored.

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        Failed, Passed, NoData, bad;

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        AverageThroughput, TotalThroughput, AverageHitsPerSecond, TotalHits,

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Remove this "String" constructor
Open

        String responseData = new String(response.getData());

Constructors for String, BigInteger, BigDecimal and the objects used to wrap primitives should never be used. Doing so is less clear and uses more memory than simply using the desired value in the case of strings, and using valueOf for everything else.

Noncompliant Code Example

String empty = new String(); // Noncompliant; yields essentially "", so just use that.
String nonempty = new String("Hello world"); // Noncompliant
Double myDouble = new Double(1.1); // Noncompliant; use valueOf
Integer integer = new Integer(1); // Noncompliant
Boolean bool = new Boolean(true); // Noncompliant
BigInteger bigInteger1 = new BigInteger("3"); // Noncompliant
BigInteger bigInteger2 = new BigInteger("9223372036854775807"); // Noncompliant
BigInteger bigInteger3 = new BigInteger("111222333444555666777888999"); // Compliant, greater than Long.MAX_VALUE

Compliant Solution

String empty = "";
String nonempty = "Hello world";
Double myDouble = Double.valueOf(1.1);
Integer integer = Integer.valueOf(1);
Boolean bool = Boolean.valueOf(true);
BigInteger bigInteger1 = BigInteger.valueOf(3);
BigInteger bigInteger2 = BigInteger.valueOf(9223372036854775807L);
BigInteger bigInteger3 = new BigInteger("111222333444555666777888999");

Exceptions

BigDecimal constructor with double argument is ignored as using valueOf instead might change resulting value. See {rule:java:S2111} .

Severity
Category
Status
Source
Language