jenkinsci/hpe-application-automation-tools-plugin

View on GitHub

Showing 716 of 716 total issues

Define a constant instead of duplicating this literal "' not found" 4 times.
Open

                logger.error("build '" + jobId + " #" + buildId + "' not found");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Extract this nested try block into a separate method.
Open

                try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

Refactor this method to reduce its Cognitive Complexity from 21 to the 15 allowed.
Open

    public CIJobsList getJobsList(boolean includeParameters, Long workspaceId) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Define a constant instead of duplicating this literal "Failed" 4 times.
Open

        vUserState.put("Failed", new ArrayList<Number>(0));

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define a constant instead of duplicating this literal "Error" 4 times.
Open

        vUserState.put("Error", new ArrayList<Number>(0));

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException ex) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Refactor this method to reduce its Cognitive Complexity from 28 to the 15 allowed.
Open

    private void outputReportFiles(List<String> reportNames, File reportDirectory, TestResult testResult, String title,

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Catch Exception instead of Throwable.
Open

        } catch (Throwable cause) {

Throwable is the superclass of all errors and exceptions in Java. Error is the superclass of all errors, which are not meant to be caught by applications.

Catching either Throwable or Error will also catch OutOfMemoryError and InternalError, from which an application should not attempt to recover.

Noncompliant Code Example

try { /* ... */ } catch (Throwable t) { /* ... */ }
try { /* ... */ } catch (Error e) { /* ... */ }

Compliant Solution

try { /* ... */ } catch (RuntimeException e) { /* ... */ }
try { /* ... */ } catch (MyException e) { /* ... */ }

See

Change the visibility of this constructor to "protected".
Open

    public PollHandler(Client client, String entityId, int interval) {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Add a default case to this switch.
Open

        switch (size % 3) {

The requirement for a final default clause is defensive programming. The clause should either take appropriate action, or contain a suitable comment as to why no action is taken.

Noncompliant Code Example

switch (param) {  //missing default clause
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

switch (param) {
  default: // default clause should be the last one
    error();
    break;
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

Compliant Solution

switch (param) {
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
  default:
    error();
    break;
}

Exceptions

If the switch parameter is an Enum and if all the constants of this enum are used in the case statements, then no default clause is expected.

Example:

public enum Day {
    SUNDAY, MONDAY
}
...
switch(day) {
  case SUNDAY:
    doSomething();
    break;
  case MONDAY:
    doSomethingElse();
    break;
}

See

Rename "parameters" which hides the field declared at line 62.
Open

        List<Map<String, String>> parameters = XPathUtils.toEntities(response.toString());

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Remove this unused "projectName" private field.
Open

        private String projectName;

If a private field is declared but not used in the program, it can be considered dead code and should therefore be removed. This will improve maintainability because developers will not wonder what the variable is used for.

Note that this rule does not take reflection into account, which means that issues will be raised on private fields that are only accessed using the reflection API.

Noncompliant Code Example

public class MyClass {
  private int foo = 42;

  public int compute(int a) {
    return a * 42;
  }

}

Compliant Solution

public class MyClass {
  public int compute(int a) {
    return a * 42;
  }
}

Exceptions

The Java serialization runtime associates with each serializable class a version number, called serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization.

A serializable class can declare its own serialVersionUID explicitly by declaring a field named serialVersionUID that must be static, final, and of type long. By definition those serialVersionUID fields should not be reported by this rule:

public class MyClass implements java.io.Serializable {
  private static final long serialVersionUID = 42L;
}

Moreover, this rule doesn't raise any issue on annotated fields.

Remove this unused method parameter "aClass".
Open

        public boolean isApplicable(Class<? extends AbstractProject> aClass) {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Add a private constructor to hide the implicit public one.
Open

    public static class Lcov {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Provide the parametrized type for this generic.
Open

                Optional opt = tmpConfig.getParameters().stream().filter(p -> TestsToRunConverterBuilder.TESTS_TO_RUN_PARAMETER.equals(p.getName())).findFirst();

Generic types shouldn't be used raw (without type parameters) in variable declarations or return values. Doing so bypasses generic type checking, and defers the catch of unsafe code to runtime.

Noncompliant Code Example

List myList; // Noncompliant
Set mySet; // Noncompliant

Compliant Solution

List<String> myList;
Set<? extends Number> mySet;

Merge this if statement with the enclosing one.
Open

                if (affectedFile.exists()) {

Merging collapsible if statements increases the code's readability.

Noncompliant Code Example

if (file != null) {
  if (file.isFile() || file.isDirectory()) {
    /* ... */
  }
}

Compliant Solution

if (file != null && isFileOrDirectory(file)) {
  /* ... */
}

private static boolean isFileOrDirectory(File file) {
  return file.isFile() || file.isDirectory();
}

Add a private constructor to hide the implicit public one.
Open

public class ScmPluginFactory {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Remove this throw statement from this finally block.
Open

                throw new ReportParseException(e);

Using return, break, throw, and so on from a finally block suppresses the propagation of any unhandled Throwable which was thrown in the try or catch block.

This rule raises an issue when a jump statement (break, continue, return, throw, and goto) would force control flow to leave a finally block.

Noncompliant Code Example

public static void main(String[] args) {
  try {
    doSomethingWhichThrowsException();
    System.out.println("OK");   // incorrect "OK" message is printed
  } catch (RuntimeException e) {
    System.out.println("ERROR");  // this message is not shown
  }
}

public static void doSomethingWhichThrowsException() {
  try {
    throw new RuntimeException();
  } finally {
    for (int i = 0; i < 10; i ++) {
      //...
      if (q == i) {
        break; // ignored
      }
    }

    /* ... */
    return;      // Noncompliant - prevents the RuntimeException from being propagated
  }
}

Compliant Solution

public static void main(String[] args) {
  try {
    doSomethingWhichThrowsException();
    System.out.println("OK");
  } catch (RuntimeException e) {
    System.out.println("ERROR");  // "ERROR" is printed as expected
  }
}

public static void doSomethingWhichThrowsException() {
  try {
    throw new RuntimeException();
  } finally {
    for (int i = 0; i < 10; i ++) {
      //...
      if (q == i) {
        break; // ignored
      }
    }

    /* ... */
  }
}

See

Define a constant instead of duplicating this literal "Bytes" 3 times.
Open

            averageThroughputResultsGraphSet.put(Y_AXIS_TITLE, "Bytes");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Severity
Category
Status
Source
Language