jenkinsci/hpe-application-automation-tools-plugin

View on GitHub

Showing 716 of 716 total issues

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

    private static final String artifactsDirectoryName = "archive";

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Remove this unused method parameter "field".
Open

                String field,

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed.
Open

    private Properties CreateProperties(EnvVars envVars,

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Replace this call to "replaceAll()" by a call to the "replace()" method.
Open

            props.put("ignoreErrorStrings", "" + ignoreErrorStrings.replaceAll("\r", ""));

The underlying implementation of String::replaceAll calls the java.util.regex.Pattern.compile() method each time it is called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.

When String::replaceAll is used, the first argument should be a real regular expression. If it’s not the case, String::replace does exactly the same thing as String::replaceAll without the performance drawback of the regex.

This rule raises an issue for each String::replaceAll used with a String as first parameter which doesn’t contains special regex character or pattern.

Noncompliant Code Example

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("Bob is", "It's"); // Noncompliant
changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant

Compliant Solution

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replace("Bob is", "It's");
changed = changed.replace("...", ";");

Or, with a regex:

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("\\w*\\sis", "It's");
changed = changed.replaceAll("\\.{3}", ";");

See

  • {rule:java:S4248} - Regex patterns should not be created needlessly

Disable access to external entities in XML parsing.
Open

        builder = factory.newDocumentBuilder();

XML specification allows the use of entities that can be internal or external (file system / network access ...) which could lead to vulnerabilities such as confidential file disclosures or SSRFs.

Example in this XML document, an external entity read the /etc/passwd file:

<?xml version="1.0" encoding="utf-8"?>
  <!DOCTYPE test [
    <!ENTITY xxe SYSTEM "file:///etc/passwd">
  ]>
<note xmlns="http://www.w3schools.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <to>&xxe;</to>
  <from>Jani</from>
  <heading>Reminder</heading>
  <body>Don't forget me this weekend!</body>
</note>

In this XSL document, network access is allowed which can lead to SSRF vulnerabilities:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.attacker.com/evil.xsl">
  <xsl:import href="http://www.attacker.com/evil.xsl"/>
  <xsl:include href="http://www.attacker.com/evil.xsl"/>
 <xsl:template match="/">
  &content;
 </xsl:template>
</xsl:stylesheet>

It is recommended to disable access to external entities and network access in general.

To protect Java XML Parsers from XXE attacks these properties have been defined since JAXP 1.5:

  • ACCESS_EXTERNAL_DTD: should be set to "" when processing XML/XSD/XLS files (it looks for external DOCTYPEs)
  • ACCESS_EXTERNAL_SCHEMA: should be set to "" when processing XML/XSD/XLS files (it looks for external schemalocation ect)
  • ACCESS_EXTERNAL_STYLESHEET should be set to "" when processing XLS file (it looks for external imports, includes ect);

Note that Apache Xerces is still based on JAXP 1.4, therefore one solution is to set to false the external-general-entities feature.

Avoid FEATURE_SECURE_PROCESSING feature to protect from XXE attacks because depending on the implementation:

  • it has no effect to protect the parser from XXE attacks but helps guard against excessive memory consumption from XML processing.
  • or it's just an obscur shortcut (it could set ACCESS_EXTERNAL_DTD and ACCESS_EXTERNAL_SCHEMA to "" but without guarantee).

When setting an entity resolver to null (eg: setEntityResolver(null)) the parser will use its own resolution, which is unsafe.

Noncompliant Code Examples

DocumentBuilderFactory library:

String xml = "xxe.xml";
DocumentBuilderFactory df = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = df.newDocumentBuilder();  // Noncompliant
Document document = builder.parse(new InputSource(xml));
DOMSource domSource = new DOMSource(document);

SAXParserFactory library:

String xml = "xxe.xml";
SaxHandler handler = new SaxHandler();
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();  // Noncompliant
parser.parse(xml, handler);

XMLInputFactory library:

XMLInputFactory factory = XMLInputFactory.newInstance();  // Noncompliant
XMLEventReader eventReader = factory.createXMLEventReader(new FileReader("xxe.xml"));

TransformerFactory library:

String xslt = "xxe.xsl";
String xml = "xxe.xml";
TransformerFactory transformerFactory = javax.xml.transform.TransformerFactory.newInstance();  // Noncompliant
Transformer transformer = transformerFactory.newTransformer(new StreamSource(xslt));

StringWriter writer = new StringWriter();
transformer.transform(new StreamSource(xml), new StreamResult(writer));
String result = writer.toString();

SchemaFactory library:

String xsd = "xxe.xsd";
StreamSource xsdStreamSource = new StreamSource(xsd);

SchemaFactory schemaFactory = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);  // Noncompliant
Schema schema = schemaFactory.newSchema(xsdStreamSource);

Validator library:

String xsd = "xxe.xsd";
String xml = "xxe.xml";
StreamSource xsdStreamSource = new StreamSource(xsd);
StreamSource xmlStreamSource = new StreamSource(xml);

SchemaFactory schemaFactory = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = schemaFactory.newSchema(xsdStreamSource);
Validator validator = schema.newValidator();   // Noncompliant

StringWriter writer = new StringWriter();
validator.validate(xmlStreamSource, new StreamResult(writer));

Dom4j library:

SAXReader xmlReader = new SAXReader(); // Noncompliant by default
Document xmlResponse = xmlReader.read(xml);

Jdom2 library:

SAXBuilder builder = new SAXBuilder(); // Noncompliant by default
Document document = builder.build(new File(xml));

Compliant Solution

DocumentBuilderFactory library:

String xml = "xxe.xml";
DocumentBuilderFactory df = DocumentBuilderFactory.newInstance();
df.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
df.setAttribute(XMLConstants.ACCESS_EXTERNAL_SCHEMA, ""); // compliant
DocumentBuilder builder = df.newDocumentBuilder();
Document document = builder.parse(new InputSource(xml));
DOMSource domSource = new DOMSource(document);

SAXParserFactory library:

String xml = "xxe.xml";
SaxHandler handler = new SaxHandler();
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();
parser.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
parser.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, ""); // compliant
parser.parse(xml, handler);

XMLInputFactory library:

XMLInputFactory factory = XMLInputFactory.newInstance();
factory.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
factory.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, "");  // compliant

XMLEventReader eventReader = factory.createXMLEventReader(new FileReader("xxe.xml"));

TransformerFactory library:

String xslt = "xxe.xsl";
String xml = "xxe.xml";
TransformerFactory transformerFactory = javax.xml.transform.TransformerFactory.newInstance();
transformerFactory.setAttribute(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
transformerFactory.setAttribute(XMLConstants.ACCESS_EXTERNAL_STYLESHEET, ""); // Compliant
// ACCESS_EXTERNAL_SCHEMA not supported in several TransformerFactory implementations
Transformer transformer = transformerFactory.newTransformer(new StreamSource(xslt));

StringWriter writer = new StringWriter();
transformer.transform(new StreamSource(xml), new StreamResult(writer));
String result = writer.toString();

SchemaFactory library:

String xsd = "xxe.xsd";
StreamSource xsdStreamSource = new StreamSource(xsd);

SchemaFactory schemaFactory = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, ""); // Compliant
schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
Schema schema = schemaFactory.newSchema(xsdStreamSource);

Validator library:

String xsd = "xxe.xsd";
String xml = "xxe.xml";
StreamSource xsdStreamSource = new StreamSource(xsd);
StreamSource xmlStreamSource = new StreamSource(xml);

SchemaFactory schemaFactory = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = schemaFactory.newSchema(xsdStreamSource);
schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, "");
schemaFactory.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, "");
// validators will also inherit of these properties
Validator validator = schema.newValidator();

validator.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, "");   // Compliant
validator.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, "");   // Compliant

StringWriter writer = new StringWriter();
validator.validate(xmlStreamSource, new StreamResult(writer));

For dom4j library, ACCESS_EXTERNAL_DTD and ACCESS_EXTERNAL_SCHEMA are not supported, thus a very strict fix is to disable doctype declarations:

SAXReader xmlReader = new SAXReader();
xmlReader.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true); // Compliant
Document xmlResponse = xmlReader.read(xml);

Jdom2 library:

SAXBuilder builder = new SAXBuilder(); // Compliant
builder.setProperty(XMLConstants.ACCESS_EXTERNAL_DTD, ""); // Compliant
builder.setProperty(XMLConstants.ACCESS_EXTERNAL_SCHEMA, ""); // Compliant
Document document = builder.build(new File(xml));

See

Remove this unused method parameter "TrendReportID".
Open

    private Testsuites parsePcTrendResponse(Testsuites ret, Run<?, ?> build, PcClient pcClient, boolean trendReportReady, String TrendReportID, int runID) throws PcException, IntrospectionException, IOException, InterruptedException, NoSuchMethodException {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

This block of commented-out lines of code should be removed.
Open

//        if(trendReportReady){

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Define and throw a dedicated exception instead of using a generic one.
Open

                                                String time, int index) throws Exception {

Using such generic exceptions as Error, RuntimeException, Throwable, and Exception prevents calling methods from handling true, system-generated exceptions differently than application-generated errors.

Noncompliant Code Example

public void foo(String bar) throws Throwable {  // Noncompliant
  throw new RuntimeException("My Message");     // Noncompliant
}

Compliant Solution

public void foo(String bar) {
  throw new MyOwnRuntimeException("My Message");
}

Exceptions

Generic exceptions in the signatures of overriding methods are ignored, because overriding method has to follow signature of the throw declaration in the superclass. The issue will be raised on superclass declaration of the method (or won't be raised at all if superclass is not part of the analysis).

@Override
public void myMethod() throws Exception {...}

Generic exceptions are also ignored in the signatures of methods that make calls to methods that throw generic exceptions.

public void myOtherMethod throws Exception {
  doTheThing();  // this method throws Exception
}

See

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed.
Open

        public Map<String, String> getJobId(String mcUrl, String mcUserName, String mcPassword, String mcTenantId, String accessKey, String authType,

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Replace this call to "replaceAll()" by a call to the "replace()" method.
Open

            result = Arrays.asList(expandedFsTests.replaceAll("\r", "").split("\n"));

The underlying implementation of String::replaceAll calls the java.util.regex.Pattern.compile() method each time it is called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.

When String::replaceAll is used, the first argument should be a real regular expression. If it’s not the case, String::replace does exactly the same thing as String::replaceAll without the performance drawback of the regex.

This rule raises an issue for each String::replaceAll used with a String as first parameter which doesn’t contains special regex character or pattern.

Noncompliant Code Example

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("Bob is", "It's"); // Noncompliant
changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant

Compliant Solution

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replace("Bob is", "It's");
changed = changed.replace("...", ";");

Or, with a regex:

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("\\w*\\sis", "It's");
changed = changed.replaceAll("\\.{3}", ";");

See

  • {rule:java:S4248} - Regex patterns should not be created needlessly

Change the visibility of this constructor to "protected".
Open

    public AbstractSvRemoteRunner(TaskListener listener, T model, FilePath workspace, SvServerSettingsModel server) {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Remove this expression which always evaluates to "true"
Open

        if ((getPcModel() != null) && (build != null) && (build instanceof AbstractBuild))

If a boolean expression doesn't change the evaluation of the condition, then it is entirely unnecessary, and can be removed. If it is gratuitous because it does not match the programmer's intent, then it's a bug and the expression should be fixed.

Noncompliant Code Example

a = true;
if (a) { // Noncompliant
  doSomething();
}

if (b && a) { // Noncompliant; "a" is always "true"
  doSomething();
}

if (c || !a) { // Noncompliant; "!a" is always "false"
  doSomething();
}

Compliant Solution

a = true;
if (foo(a)) {
  doSomething();
}

if (b) {
  doSomething();
}

if (c) {
  doSomething();
}

See

Make the enclosing method "static" or remove this set.
Open

        _run = build;

Correctly updating a static field from a non-static method is tricky to get right and could easily lead to bugs if there are multiple class instances and/or multiple threads in play. Ideally, static fields are only updated from synchronized static methods.

This rule raises an issue each time a static field is updated from a non-static method.

Noncompliant Code Example

public class MyClass {

  private static int count = 0;

  public void doSomething() {
    //...
    count++;  // Noncompliant
  }
}

Refactor this method to reduce its Cognitive Complexity from 42 to the 15 allowed.
Open

    private boolean validatePcForm() {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

This block of commented-out lines of code should be removed.
Open

        //trendReportReady = false;

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Remove this unused private "execute" method.
Open

    private Testsuites execute(

private methods that are never executed are dead code: unnecessary, inoperative code that should be removed. Cleaning out dead code decreases the size of the maintained codebase, making it easier to understand the program and preventing bugs from being introduced.

Note that this rule does not take reflection into account, which means that issues will be raised on private methods that are only accessed using the reflection API.

Noncompliant Code Example

public class Foo implements Serializable
{
  private Foo(){}     //Compliant, private empty constructor intentionally used to prevent any direct instantiation of a class.
  public static void doSomething(){
    Foo foo = new Foo();
    ...
  }
  private void unusedPrivateMethod(){...}
  private void writeObject(ObjectOutputStream s){...}  //Compliant, relates to the java serialization mechanism
  private void readObject(ObjectInputStream in){...}  //Compliant, relates to the java serialization mechanism
}

Compliant Solution

public class Foo implements Serializable
{
  private Foo(){}     //Compliant, private empty constructor intentionally used to prevent any direct instantiation of a class.
  public static void doSomething(){
    Foo foo = new Foo();
    ...
  }

  private void writeObject(ObjectOutputStream s){...}  //Compliant, relates to the java serialization mechanism

  private void readObject(ObjectInputStream in){...}  //Compliant, relates to the java serialization mechanism
}

Exceptions

This rule doesn't raise any issue on annotated methods.

Replace this call to "replaceAll()" by a call to the "replace()" method.
Open

            String[] testSetsArr = this.almTestSets.replaceAll("\r", "").split(

The underlying implementation of String::replaceAll calls the java.util.regex.Pattern.compile() method each time it is called even if the first argument is not a regular expression. This has a significant performance cost and therefore should be used with care.

When String::replaceAll is used, the first argument should be a real regular expression. If it’s not the case, String::replace does exactly the same thing as String::replaceAll without the performance drawback of the regex.

This rule raises an issue for each String::replaceAll used with a String as first parameter which doesn’t contains special regex character or pattern.

Noncompliant Code Example

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("Bob is", "It's"); // Noncompliant
changed = changed.replaceAll("\\.\\.\\.", ";"); // Noncompliant

Compliant Solution

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replace("Bob is", "It's");
changed = changed.replace("...", ";");

Or, with a regex:

String init = "Bob is a Bird... Bob is a Plane... Bob is Superman!";
String changed = init.replaceAll("\\w*\\sis", "It's");
changed = changed.replaceAll("\\.{3}", ";");

See

  • {rule:java:S4248} - Regex patterns should not be created needlessly

Rename this constant name to match the regular expression '^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$'.
Open

        private static final String DeviceIdKey = "deviceid";

Shared coding conventions allow teams to collaborate efficiently. This rule checks that all constant names match a provided regular expression.

Noncompliant Code Example

With the default regular expression ^[A-Z][A-Z0-9]*(_[A-Z0-9]+)*$:

public class MyClass {
  public static final int first = 1;
}

public enum MyEnum {
  first;
}

Compliant Solution

public class MyClass {
  public static final int FIRST = 1;
}

public enum MyEnum {
  FIRST;
}

Lambda should be used to defer string concatenation.
Open

            LOG.log(Level.SEVERE, "Build failed: " + e.getMessage(), e);

Because printf-style format strings are interpreted at runtime, rather than validated by the compiler, they can contain errors that result in the wrong strings being created. This rule statically validates the correlation of printf-style format strings to their arguments when calling the format(...) methods of java.util.Formatter, java.lang.String, java.io.PrintStream, MessageFormat, and java.io.PrintWriter classes and the printf(...) methods of java.io.PrintStream or java.io.PrintWriter classes.

Noncompliant Code Example

String.format("First {0} and then {1}", "foo", "bar");  //Noncompliant. Looks like there is a confusion with the use of {{java.text.MessageFormat}}, parameters "foo" and "bar" will be simply ignored here
String.format("Display %3$d and then %d", 1, 2, 3);   //Noncompliant; the second argument '2' is unused
String.format("Too many arguments %d and %d", 1, 2, 3);  //Noncompliant; the third argument '3' is unused
String.format("First Line\n");   //Noncompliant; %n should be used in place of \n to produce the platform-specific line separator
String.format("Is myObject null ? %b", myObject);   //Noncompliant; when a non-boolean argument is formatted with %b, it prints true for any nonnull value, and false for null. Even if intended, this is misleading. It's better to directly inject the boolean value (myObject == null in this case)
String.format("value is " + value); // Noncompliant
String s = String.format("string without arguments"); // Noncompliant

MessageFormat.format("Result '{0}'.", value); // Noncompliant; String contains no format specifiers. (quote are discarding format specifiers)
MessageFormat.format("Result {0}.", value, value);  // Noncompliant; 2nd argument is not used
MessageFormat.format("Result {0}.", myObject.toString()); // Noncompliant; no need to call toString() on objects

java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result {0}.", myObject.toString()); // Noncompliant; no need to call toString() on objects
logger.log(java.util.logging.Level.SEVERE, "Result.", new Exception()); // compliant, parameter is an exception
logger.log(java.util.logging.Level.SEVERE, "Result '{0}'", 14); // Noncompliant - String contains no format specifiers.
logger.log(java.util.logging.Level.SEVERE, "Result " + param, exception); // Noncompliant; Lambda should be used to differ string concatenation.

org.slf4j.Logger slf4jLog;
org.slf4j.Marker marker;

slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message", 1); // Noncompliant - String contains no format specifiers.

org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message", 1); // Noncompliant - String contains no format specifiers.

Compliant Solution

String.format("First %s and then %s", "foo", "bar");
String.format("Display %2$d and then %d", 1, 3);
String.format("Too many arguments %d %d", 1, 2);
String.format("First Line%n");
String.format("Is myObject null ? %b", myObject == null);
String.format("value is %d", value);
String s = "string without arguments";

MessageFormat.format("Result {0}.", value);
MessageFormat.format("Result '{0}'  =  {0}", value);
MessageFormat.format("Result {0}.", myObject);

java.util.Logger logger;
logger.log(java.util.logging.Level.SEVERE, "Result {0}.", myObject);
logger.log(java.util.logging.Level.SEVERE, "Result {0}'", 14);
logger.log(java.util.logging.Level.SEVERE, exception, () -> "Result " + param);

org.slf4j.Logger slf4jLog;
org.slf4j.Marker marker;

slf4jLog.debug(marker, "message {}");
slf4jLog.debug(marker, "message {}", 1);

org.apache.logging.log4j.Logger log4jLog;
log4jLog.debug("message {}", 1);

See

Severity
Category
Status
Source
Language