jenkinsci/hpe-application-automation-tools-plugin

View on GitHub
src/main/java/com/microfocus/application/automation/tools/octane/octaneExecution/ExecuteTestsInOctaneBuilder.java

Summary

Maintainability
A
0 mins
Test Coverage

Refactor this method to reduce its Cognitive Complexity from 23 to the 15 allowed.
Open

    public void perform(@Nonnull Run<?, ?> build, @Nonnull FilePath filePath, @Nonnull Launcher launcher, @Nonnull TaskListener listener) throws InterruptedException, IOException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Either remove or fill this block of code.
Open

            if (job instanceof AbstractProject || job.getClass().getName().equals(JobProcessorFactory.WORKFLOW_JOB_NAME)) {

Most of the time a block of code is empty when a piece of code is really missing. So such empty block must be either filled or removed.

Noncompliant Code Example

for (int i = 0; i < 42; i++){}  // Empty on purpose or missing piece of code ?

Exceptions

When a block contains a comment, this block is not considered to be empty unless it is a synchronized block. synchronized blocks are still considered empty even with comments because they can still affect program flow.

Define and throw a dedicated exception instead of using a generic one.
Open

                        throw new RuntimeException("Failed in waiting for job finishing : " + e.getMessage());

Using such generic exceptions as Error, RuntimeException, Throwable, and Exception prevents calling methods from handling true, system-generated exceptions differently than application-generated errors.

Noncompliant Code Example

public void foo(String bar) throws Throwable {  // Noncompliant
  throw new RuntimeException("My Message");     // Noncompliant
}

Compliant Solution

public void foo(String bar) {
  throw new MyOwnRuntimeException("My Message");
}

Exceptions

Generic exceptions in the signatures of overriding methods are ignored, because overriding method has to follow signature of the throw declaration in the superclass. The issue will be raised on superclass declaration of the method (or won't be raised at all if superclass is not part of the analysis).

@Override
public void myMethod() throws Exception {...}

Generic exceptions are also ignored in the signatures of methods that make calls to methods that throw generic exceptions.

public void myOtherMethod throws Exception {
  doTheThing();  // this method throws Exception
}

See

Define and throw a dedicated exception instead of using a generic one.
Open

                throw new RuntimeException("not supported execution mode");

Using such generic exceptions as Error, RuntimeException, Throwable, and Exception prevents calling methods from handling true, system-generated exceptions differently than application-generated errors.

Noncompliant Code Example

public void foo(String bar) throws Throwable {  // Noncompliant
  throw new RuntimeException("My Message");     // Noncompliant
}

Compliant Solution

public void foo(String bar) {
  throw new MyOwnRuntimeException("My Message");
}

Exceptions

Generic exceptions in the signatures of overriding methods are ignored, because overriding method has to follow signature of the throw declaration in the superclass. The issue will be raised on superclass declaration of the method (or won't be raised at all if superclass is not part of the analysis).

@Override
public void myMethod() throws Exception {...}

Generic exceptions are also ignored in the signatures of methods that make calls to methods that throw generic exceptions.

public void myOtherMethod throws Exception {
  doTheThing();  // this method throws Exception
}

See

Define a constant instead of duplicating this literal "/job/" 4 times.
Open

                            listener.hyperlink("/job/" + project.getFullName().replace("/", "/job/"), project.getFullName());

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Define and throw a dedicated exception instead of using a generic one.
Open

            throw new RuntimeException("Failed to convert workspace to long :  " + myWorkspaceId);

Using such generic exceptions as Error, RuntimeException, Throwable, and Exception prevents calling methods from handling true, system-generated exceptions differently than application-generated errors.

Noncompliant Code Example

public void foo(String bar) throws Throwable {  // Noncompliant
  throw new RuntimeException("My Message");     // Noncompliant
}

Compliant Solution

public void foo(String bar) {
  throw new MyOwnRuntimeException("My Message");
}

Exceptions

Generic exceptions in the signatures of overriding methods are ignored, because overriding method has to follow signature of the throw declaration in the superclass. The issue will be raised on superclass declaration of the method (or won't be raised at all if superclass is not part of the analysis).

@Override
public void myMethod() throws Exception {...}

Generic exceptions are also ignored in the signatures of methods that make calls to methods that throw generic exceptions.

public void myOtherMethod throws Exception {
  doTheThing();  // this method throws Exception
}

See

This block of commented-out lines of code should be removed.
Open

            return true;//FreeStyleProject.class.isAssignableFrom(jobType);

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Define and throw a dedicated exception instead of using a generic one.
Open

                            throw new RuntimeException("Failed to print link to triggered job : " + e.getMessage());

Using such generic exceptions as Error, RuntimeException, Throwable, and Exception prevents calling methods from handling true, system-generated exceptions differently than application-generated errors.

Noncompliant Code Example

public void foo(String bar) throws Throwable {  // Noncompliant
  throw new RuntimeException("My Message");     // Noncompliant
}

Compliant Solution

public void foo(String bar) {
  throw new MyOwnRuntimeException("My Message");
}

Exceptions

Generic exceptions in the signatures of overriding methods are ignored, because overriding method has to follow signature of the throw declaration in the superclass. The issue will be raised on superclass declaration of the method (or won't be raised at all if superclass is not part of the analysis).

@Override
public void myMethod() throws Exception {...}

Generic exceptions are also ignored in the signatures of methods that make calls to methods that throw generic exceptions.

public void myOtherMethod throws Exception {
  doTheThing();  // this method throws Exception
}

See

Extract this nested try block into a separate method.
Open

                        try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

There are no issues that match your filters.

Category
Status