jenkinsci/hpe-application-automation-tools-plugin

View on GitHub
src/main/java/com/microfocus/application/automation/tools/octane/testrunner/TestsToRunConverterBuilder.java

Summary

Maintainability
A
35 mins
Test Coverage

Refactor this method to reduce its Cognitive Complexity from 31 to the 15 allowed.
Open

    public void perform(@Nonnull Run<?, ?> build, @Nonnull FilePath filePath, @Nonnull Launcher launcher, @Nonnull TaskListener listener) throws InterruptedException, IOException {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

This block of commented-out lines of code should be removed.
Open

            return true;//FreeStyleProject.class.isAssignableFrom(jobType);

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

This block of commented-out lines of code should be removed.
Open

                        executingDirectory = (String) checkoutDirParameter.getValue();//"%" + CHECKOUT_DIRECTORY_PARAMETER + "%";

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

This block of commented-out lines of code should be removed.
Open

                //MBT needs to know real path to tests and not ${workspace}

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Extract this nested try block into a separate method.
Open

                try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

                } catch (IOException | InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Identical blocks of code found in 3 locations. Consider refactoring.
Open

        try {
            strProps = AlmToolsUtils.getPropsAsString(props);
        } catch (IOException e) {
            build.setResult(Result.FAILURE);
            listener.error("Failed to store properties on agent machine: " + e);
src/main/java/com/microfocus/application/automation/tools/run/RunFromAlmBuilder.java on lines 374..380
src/main/java/com/microfocus/application/automation/tools/run/RunFromFileBuilder.java on lines 859..865

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 44.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

There are no issues that match your filters.

Category
Status