deps/uv/src/unix/thread.c

Summary

Maintainability
Test Coverage
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "uv.h"
#include "internal.h"

#include <pthread.h>
#include <assert.h>
#include <errno.h>

#include <sys/time.h>

#undef NANOSEC
#define NANOSEC ((uint64_t) 1e9)


struct thread_ctx {
  void (*entry)(void* arg);
  void* arg;
};


static void* uv__thread_start(void *arg)
{
  struct thread_ctx *ctx_p;
  struct thread_ctx ctx;

  ctx_p = arg;
  ctx = *ctx_p;
  uv__free(ctx_p);
  ctx.entry(ctx.arg);

  return 0;
}


int uv_thread_create(uv_thread_t *tid, void (*entry)(void *arg), void *arg) {
  struct thread_ctx* ctx;
  int err;

  ctx = uv__malloc(sizeof(*ctx));
  if (ctx == NULL)
    return UV_ENOMEM;

  ctx->entry = entry;
  ctx->arg = arg;

  err = pthread_create(tid, NULL, uv__thread_start, ctx);

  if (err)
    uv__free(ctx);

  return -err;
}


uv_thread_t uv_thread_self(void) {
  return pthread_self();
}

int uv_thread_join(uv_thread_t *tid) {
  return -pthread_join(*tid, NULL);
}


int uv_thread_equal(const uv_thread_t* t1, const uv_thread_t* t2) {
  return pthread_equal(*t1, *t2);
}


int uv_mutex_init(uv_mutex_t* mutex) {
#if defined(NDEBUG) || !defined(PTHREAD_MUTEX_ERRORCHECK)
  return -pthread_mutex_init(mutex, NULL);
#else
  pthread_mutexattr_t attr;
  int err;

  if (pthread_mutexattr_init(&attr))
    abort();

  if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK))
    abort();

  err = pthread_mutex_init(mutex, &attr);

  if (pthread_mutexattr_destroy(&attr))
    abort();

  return -err;
#endif
}


void uv_mutex_destroy(uv_mutex_t* mutex) {
  if (pthread_mutex_destroy(mutex))
    abort();
}


void uv_mutex_lock(uv_mutex_t* mutex) {
  if (pthread_mutex_lock(mutex))
    abort();
}


int uv_mutex_trylock(uv_mutex_t* mutex) {
  int err;

  /* FIXME(bnoordhuis) EAGAIN means recursive lock limit reached. Arguably
   * a bug, should probably abort rather than return -EAGAIN.
   */
  err = pthread_mutex_trylock(mutex);
  if (err && err != EBUSY && err != EAGAIN)
    abort();

  return -err;
}


void uv_mutex_unlock(uv_mutex_t* mutex) {
  if (pthread_mutex_unlock(mutex))
    abort();
}


int uv_rwlock_init(uv_rwlock_t* rwlock) {
  return -pthread_rwlock_init(rwlock, NULL);
}


void uv_rwlock_destroy(uv_rwlock_t* rwlock) {
  if (pthread_rwlock_destroy(rwlock))
    abort();
}


void uv_rwlock_rdlock(uv_rwlock_t* rwlock) {
  if (pthread_rwlock_rdlock(rwlock))
    abort();
}


int uv_rwlock_tryrdlock(uv_rwlock_t* rwlock) {
  int err;

  err = pthread_rwlock_tryrdlock(rwlock);
  if (err && err != EBUSY && err != EAGAIN)
    abort();

  return -err;
}


void uv_rwlock_rdunlock(uv_rwlock_t* rwlock) {
  if (pthread_rwlock_unlock(rwlock))
    abort();
}


void uv_rwlock_wrlock(uv_rwlock_t* rwlock) {
  if (pthread_rwlock_wrlock(rwlock))
    abort();
}


int uv_rwlock_trywrlock(uv_rwlock_t* rwlock) {
  int err;

  err = pthread_rwlock_trywrlock(rwlock);
  if (err && err != EBUSY && err != EAGAIN)
    abort();

  return -err;
}


void uv_rwlock_wrunlock(uv_rwlock_t* rwlock) {
  if (pthread_rwlock_unlock(rwlock))
    abort();
}


void uv_once(uv_once_t* guard, void (*callback)(void)) {
  if (pthread_once(guard, callback))
    abort();
}

#if defined(__APPLE__) && defined(__MACH__)

int uv_sem_init(uv_sem_t* sem, unsigned int value) {
  kern_return_t err;

  err = semaphore_create(mach_task_self(), sem, SYNC_POLICY_FIFO, value);
  if (err == KERN_SUCCESS)
    return 0;
  if (err == KERN_INVALID_ARGUMENT)
    return -EINVAL;
  if (err == KERN_RESOURCE_SHORTAGE)
    return -ENOMEM;

  abort();
  return -EINVAL;  /* Satisfy the compiler. */
}


void uv_sem_destroy(uv_sem_t* sem) {
  if (semaphore_destroy(mach_task_self(), *sem))
    abort();
}


void uv_sem_post(uv_sem_t* sem) {
  if (semaphore_signal(*sem))
    abort();
}


void uv_sem_wait(uv_sem_t* sem) {
  int r;

  do
    r = semaphore_wait(*sem);
  while (r == KERN_ABORTED);

  if (r != KERN_SUCCESS)
    abort();
}


int uv_sem_trywait(uv_sem_t* sem) {
  mach_timespec_t interval;
  kern_return_t err;

  interval.tv_sec = 0;
  interval.tv_nsec = 0;

  err = semaphore_timedwait(*sem, interval);
  if (err == KERN_SUCCESS)
    return 0;
  if (err == KERN_OPERATION_TIMED_OUT)
    return -EAGAIN;

  abort();
  return -EINVAL;  /* Satisfy the compiler. */
}

#else /* !(defined(__APPLE__) && defined(__MACH__)) */

int uv_sem_init(uv_sem_t* sem, unsigned int value) {
  if (sem_init(sem, 0, value))
    return -errno;
  return 0;
}


void uv_sem_destroy(uv_sem_t* sem) {
  if (sem_destroy(sem))
    abort();
}


void uv_sem_post(uv_sem_t* sem) {
  if (sem_post(sem))
    abort();
}


void uv_sem_wait(uv_sem_t* sem) {
  int r;

  do
    r = sem_wait(sem);
  while (r == -1 && errno == EINTR);

  if (r)
    abort();
}


int uv_sem_trywait(uv_sem_t* sem) {
  int r;

  do
    r = sem_trywait(sem);
  while (r == -1 && errno == EINTR);

  if (r) {
    if (errno == EAGAIN)
      return -EAGAIN;
    abort();
  }

  return 0;
}

#endif /* defined(__APPLE__) && defined(__MACH__) */


#if defined(__APPLE__) && defined(__MACH__)

int uv_cond_init(uv_cond_t* cond) {
  return -pthread_cond_init(cond, NULL);
}

#else /* !(defined(__APPLE__) && defined(__MACH__)) */

int uv_cond_init(uv_cond_t* cond) {
  pthread_condattr_t attr;
  int err;

  err = pthread_condattr_init(&attr);
  if (err)
    return -err;

#if !(defined(__ANDROID__) && defined(HAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC))
  err = pthread_condattr_setclock(&attr, CLOCK_MONOTONIC);
  if (err)
    goto error2;
#endif

  err = pthread_cond_init(cond, &attr);
  if (err)
    goto error2;

  err = pthread_condattr_destroy(&attr);
  if (err)
    goto error;

  return 0;

error:
  pthread_cond_destroy(cond);
error2:
  pthread_condattr_destroy(&attr);
  return -err;
}

#endif /* defined(__APPLE__) && defined(__MACH__) */

void uv_cond_destroy(uv_cond_t* cond) {
  if (pthread_cond_destroy(cond))
    abort();
}

void uv_cond_signal(uv_cond_t* cond) {
  if (pthread_cond_signal(cond))
    abort();
}

void uv_cond_broadcast(uv_cond_t* cond) {
  if (pthread_cond_broadcast(cond))
    abort();
}

void uv_cond_wait(uv_cond_t* cond, uv_mutex_t* mutex) {
  if (pthread_cond_wait(cond, mutex))
    abort();
}


int uv_cond_timedwait(uv_cond_t* cond, uv_mutex_t* mutex, uint64_t timeout) {
  int r;
  struct timespec ts;

#if defined(__APPLE__) && defined(__MACH__)
  ts.tv_sec = timeout / NANOSEC;
  ts.tv_nsec = timeout % NANOSEC;
  r = pthread_cond_timedwait_relative_np(cond, mutex, &ts);
#else
  timeout += uv__hrtime(UV_CLOCK_PRECISE);
  ts.tv_sec = timeout / NANOSEC;
  ts.tv_nsec = timeout % NANOSEC;
#if defined(__ANDROID__) && defined(HAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC)
  /*
   * The bionic pthread implementation doesn't support CLOCK_MONOTONIC,
   * but has this alternative function instead.
   */
  r = pthread_cond_timedwait_monotonic_np(cond, mutex, &ts);
#else
  r = pthread_cond_timedwait(cond, mutex, &ts);
#endif /* __ANDROID__ */
#endif


  if (r == 0)
    return 0;

  if (r == ETIMEDOUT)
    return -ETIMEDOUT;

  abort();
  return -EINVAL;  /* Satisfy the compiler. */
}


#if defined(__APPLE__) && defined(__MACH__)

int uv_barrier_init(uv_barrier_t* barrier, unsigned int count) {
  int err;

  barrier->n = count;
  barrier->count = 0;

  err = uv_mutex_init(&barrier->mutex);
  if (err)
    return -err;

  err = uv_sem_init(&barrier->turnstile1, 0);
  if (err)
    goto error2;

  err = uv_sem_init(&barrier->turnstile2, 1);
  if (err)
    goto error;

  return 0;

error:
  uv_sem_destroy(&barrier->turnstile1);
error2:
  uv_mutex_destroy(&barrier->mutex);
  return -err;

}


void uv_barrier_destroy(uv_barrier_t* barrier) {
  uv_sem_destroy(&barrier->turnstile2);
  uv_sem_destroy(&barrier->turnstile1);
  uv_mutex_destroy(&barrier->mutex);
}


int uv_barrier_wait(uv_barrier_t* barrier) {
  int serial_thread;

  uv_mutex_lock(&barrier->mutex);
  if (++barrier->count == barrier->n) {
    uv_sem_wait(&barrier->turnstile2);
    uv_sem_post(&barrier->turnstile1);
  }
  uv_mutex_unlock(&barrier->mutex);

  uv_sem_wait(&barrier->turnstile1);
  uv_sem_post(&barrier->turnstile1);

  uv_mutex_lock(&barrier->mutex);
  serial_thread = (--barrier->count == 0);
  if (serial_thread) {
    uv_sem_wait(&barrier->turnstile1);
    uv_sem_post(&barrier->turnstile2);
  }
  uv_mutex_unlock(&barrier->mutex);

  uv_sem_wait(&barrier->turnstile2);
  uv_sem_post(&barrier->turnstile2);
  return serial_thread;
}

#else /* !(defined(__APPLE__) && defined(__MACH__)) */

int uv_barrier_init(uv_barrier_t* barrier, unsigned int count) {
  return -pthread_barrier_init(barrier, NULL, count);
}


void uv_barrier_destroy(uv_barrier_t* barrier) {
  if (pthread_barrier_destroy(barrier))
    abort();
}


int uv_barrier_wait(uv_barrier_t* barrier) {
  int r = pthread_barrier_wait(barrier);
  if (r && r != PTHREAD_BARRIER_SERIAL_THREAD)
    abort();
  return r == PTHREAD_BARRIER_SERIAL_THREAD;
}

#endif /* defined(__APPLE__) && defined(__MACH__) */

int uv_key_create(uv_key_t* key) {
  return -pthread_key_create(key, NULL);
}


void uv_key_delete(uv_key_t* key) {
  if (pthread_key_delete(*key))
    abort();
}


void* uv_key_get(uv_key_t* key) {
  return pthread_getspecific(*key);
}


void uv_key_set(uv_key_t* key, void* value) {
  if (pthread_setspecific(*key, value))
    abort();
}