jshoe/coursequestionbank

View on GitHub
app/assets/javascripts/problems.js

Summary

Maintainability
C
7 hrs
Test Coverage

Function setup has 30 lines of code (exceeds 25 allowed). Consider refactoring.
Open

  setup: function() {
    $('.bloom-buttons').each(function() {
      var container = $(this);
      container.find('form').submit(function() {
        $.ajax({
Severity: Minor
Found in app/assets/javascripts/problems.js - About 1 hr to fix

    Expected '===' and instead saw '=='.
    Open

              if (category == 'none')
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Use ‘===’ to compare with ‘null’.
    Open

                if (data.error == null)
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Disallow Null Comparisons (no-eq-null)

    Comparing to null without a type-checking operator (== or !=), can have unintended results as the comparison will evaluate to true when comparing to not just a null, but also an undefined value.

    if (foo == null) {
      bar();
    }

    Rule Details

    The no-eq-null rule aims reduce potential bug and unwanted behavior by ensuring that comparisons to null only match null, and not also undefined. As such it will flag comparisons to null when using == and !=.

    Examples of incorrect code for this rule:

    /*eslint no-eq-null: "error"*/
    
    if (foo == null) {
      bar();
    }
    
    while (qux != null) {
      baz();
    }

    Examples of correct code for this rule:

    /*eslint no-eq-null: "error"*/
    
    if (foo === null) {
      bar();
    }
    
    while (qux !== null) {
      baz();
    }

    Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

          var obsolete = field.attr('value') == '1';
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

          var newValue = button.attr('value') == 'Public' ? 'Private' : 'Public';
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '!==' and instead saw '!='.
    Open

            if (category != 'none')
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Expected '===' and instead saw '=='.
    Open

                if (data.error == null)
    Severity: Minor
    Found in app/assets/javascripts/problems.js by eslint

    Require === and !== (eqeqeq)

    It is considered good practice to use the type-safe equality operators === and !== instead of their regular counterparts == and !=.

    The reason for this is that == and != do type coercion which follows the rather obscure Abstract Equality Comparison Algorithm. For instance, the following statements are all considered true:

    • [] == false
    • [] == ![]
    • 3 == "03"

    If one of those occurs in an innocent-looking statement such as a == b the actual problem is very difficult to spot.

    Rule Details

    This rule is aimed at eliminating the type-unsafe equality operators.

    Examples of incorrect code for this rule:

    /*eslint eqeqeq: "error"*/
    
    if (x == 42) { }
    
    if ("" == text) { }
    
    if (obj.getStuff() != undefined) { }

    The --fix option on the command line automatically fixes some problems reported by this rule. A problem is only fixed if one of the operands is a typeof expression, or if both operands are literals with the same type.

    Options

    always

    The "always" option (default) enforces the use of === and !== in every situation (except when you opt-in to more specific handling of null [see below]).

    Examples of incorrect code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a == b
    foo == true
    bananas != 1
    value == undefined
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    Examples of correct code for the "always" option:

    /*eslint eqeqeq: ["error", "always"]*/
    
    a === b
    foo === true
    bananas !== 1
    value === undefined
    typeof foo === 'undefined'
    'hello' !== 'world'
    0 === 0
    true === true
    foo === null

    This rule optionally takes a second argument, which should be an object with the following supported properties:

    • "null": Customize how this rule treats null literals. Possible values:
      • always (default) - Always use === or !==.
      • never - Never use === or !== with null.
      • ignore - Do not apply this rule to null.

    smart

    The "smart" option enforces the use of === and !== except for these cases:

    • Comparing two literal values
    • Evaluating the value of typeof
    • Comparing against null

    Examples of incorrect code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    // comparing two variables requires ===
    a == b
    
    // only one side is a literal
    foo == true
    bananas != 1
    
    // comparing to undefined requires ===
    value == undefined

    Examples of correct code for the "smart" option:

    /*eslint eqeqeq: ["error", "smart"]*/
    
    typeof foo == 'undefined'
    'hello' != 'world'
    0 == 0
    true == true
    foo == null

    allow-null

    Deprecated: Instead of using this option use "always" and pass a "null" option property with value "ignore". This will tell eslint to always enforce strict equality except when comparing with the null literal.

    ["error", "always", {"null": "ignore"}]

    When Not To Use It

    If you don't want to enforce a style for using equality operators, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

    Similar blocks of code found in 2 locations. Consider refactoring.
    Open

          problem.find('.history_button').click(function() {
            problem.find('.supersede_form').hide();
            problem.find('.history_list').toggle();
            return false;
          });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 1 other location - About 1 hr to fix
    app/assets/javascripts/problems.js on lines 28..32

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 63.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 2 locations. Consider refactoring.
    Open

          problem.find('.supersede_button').click(function() {
            problem.find('.supersede_form').toggle();
            problem.find('.history_list').hide();
            return false;
          });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 1 other location - About 1 hr to fix
    app/assets/javascripts/problems.js on lines 33..37

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 63.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 5 locations. Consider refactoring.
    Open

            $.ajax({
              url: $(this).attr('action'),
              type: 'PUT',
              data: $(this).serialize()
            });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 4 other locations - About 45 mins to fix
    app/assets/javascripts/problems.js on lines 69..73
    app/assets/javascripts/problems.js on lines 88..92
    app/assets/javascripts/problems.js on lines 103..107
    app/assets/javascripts/problems.js on lines 170..174

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 50.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 5 locations. Consider refactoring.
    Open

          $.ajax({
            url: $(this).attr('action'),
            type: 'PUT',
            data: $(this).serialize()
          });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 4 other locations - About 45 mins to fix
    app/assets/javascripts/problems.js on lines 69..73
    app/assets/javascripts/problems.js on lines 88..92
    app/assets/javascripts/problems.js on lines 125..129
    app/assets/javascripts/problems.js on lines 170..174

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 50.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 5 locations. Consider refactoring.
    Open

            $.ajax({
              url: $(this).attr('action'),
              type: 'PUT',
              data: $(this).serialize()
            });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 4 other locations - About 45 mins to fix
    app/assets/javascripts/problems.js on lines 69..73
    app/assets/javascripts/problems.js on lines 88..92
    app/assets/javascripts/problems.js on lines 103..107
    app/assets/javascripts/problems.js on lines 125..129

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 50.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 5 locations. Consider refactoring.
    Open

          $.ajax({
            url: $(this).attr('action'),
            type: 'PUT',
            data: $(this).serialize()
          });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 4 other locations - About 45 mins to fix
    app/assets/javascripts/problems.js on lines 69..73
    app/assets/javascripts/problems.js on lines 103..107
    app/assets/javascripts/problems.js on lines 125..129
    app/assets/javascripts/problems.js on lines 170..174

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 50.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Similar blocks of code found in 5 locations. Consider refactoring.
    Open

          $.ajax({
            url: $(this).attr('action'),
            type: 'POST',
            data: $(this).serialize()
          });
    Severity: Major
    Found in app/assets/javascripts/problems.js and 4 other locations - About 45 mins to fix
    app/assets/javascripts/problems.js on lines 88..92
    app/assets/javascripts/problems.js on lines 103..107
    app/assets/javascripts/problems.js on lines 125..129
    app/assets/javascripts/problems.js on lines 170..174

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 50.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    There are no issues that match your filters.

    Category
    Status