Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
classWarehouse
defsale_price(item)
(item.price - item.rebate)*@vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
A Long Parameter List occurs when a method has a lot of parameters.
Example
Given
classDummy
deflong_list(foo,bar,baz,fling,flung)
puts foo,bar,baz,fling,flung
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[2]:Dummy#long_list has 5 parameters (LongParameterList)
A common solution to this problem would be the introduction of parameter objects.
A Nested Iterator occurs when a block contains another block.
Example
Given
classDuck
class<<self
defduck_names
%i!tick trick track!.eachdo|surname|
%i!duck!.eachdo|last_name|
puts "full name is #{surname}#{last_name}"
end
end
end
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[5]:Duck#duck_names contains iterators nested 2 deep (NestedIterators)
A method with Too Many Statements is any method that has a large number of lines.
Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
A method with Too Many Statements is any method that has a large number of lines.
Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
A method with Too Many Statements is any method that has a large number of lines.
Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
A Nested Iterator occurs when a block contains another block.
Example
Given
classDuck
class<<self
defduck_names
%i!tick trick track!.eachdo|surname|
%i!duck!.eachdo|last_name|
puts "full name is #{surname}#{last_name}"
end
end
end
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[5]:Duck#duck_names contains iterators nested 2 deep (NestedIterators)
Boolean Parameter is a special case of Control Couple, where a method parameter is defaulted to true or false. A Boolean Parameter effectively permits a method's caller to decide which execution path to take. This is a case of bad cohesion. You're creating a dependency between methods that is not really necessary, thus increasing coupling.
Example
Given
classDummy
defhit_the_switch(switch =true)
if switch
puts 'Hitting the switch'
# do other things...
else
puts 'Not hitting the switch'
# do other things...
end
end
end
Reek would emit the following warning:
test.rb -- 3 warnings:
[1]:Dummy#hit_the_switch has boolean parameter 'switch' (BooleanParameter)
[2]:Dummy#hit_the_switch is controlled by argument switch (ControlParameter)
Note that both smells are reported, Boolean Parameter and Control Parameter.
Getting rid of the smell
This is highly dependent on your exact architecture, but looking at the example above what you could do is:
Move everything in the if branch into a separate method
Move everything in the else branch into a separate method
Get rid of the hit_the_switch method alltogether
Make the decision what method to call in the initial caller of hit_the_switch
A Long Parameter List occurs when a method has a lot of parameters.
Example
Given
classDummy
deflong_list(foo,bar,baz,fling,flung)
puts foo,bar,baz,fling,flung
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[2]:Dummy#long_list has 5 parameters (LongParameterList)
A common solution to this problem would be the introduction of parameter objects.
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
classWarehouse
defsale_price(item)
(item.price - item.rebate)*@vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
A method with Too Many Statements is any method that has a large number of lines.
Too Many Statements warns about any method that has more than 5 statements. Reek's smell detector for Too Many Statements counts +1 for every simple statement in a method and +1 for every statement within a control structure (if, else, case, when, for, while, until, begin, rescue) but it doesn't count the control structure itself.
So the following method would score +6 in Reek's statement-counting algorithm:
(You might argue that the two assigments within the first @if@ should count as statements, and that perhaps the nested assignment should count as +2.)
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
classWarehouse
defsale_price(item)
(item.price - item.rebate)*@vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)
since this:
(item.price - item.rebate)
belongs to the Item class, not the Warehouse.
A Nested Iterator occurs when a block contains another block.
Example
Given
classDuck
class<<self
defduck_names
%i!tick trick track!.eachdo|surname|
%i!duck!.eachdo|last_name|
puts "full name is #{surname}#{last_name}"
end
end
end
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[5]:Duck#duck_names contains iterators nested 2 deep (NestedIterators)
A Long Parameter List occurs when a method has a lot of parameters.
Example
Given
classDummy
deflong_list(foo,bar,baz,fling,flung)
puts foo,bar,baz,fling,flung
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[2]:Dummy#long_list has 5 parameters (LongParameterList)
A common solution to this problem would be the introduction of parameter objects.
A Long Parameter List occurs when a method has a lot of parameters.
Example
Given
classDummy
deflong_list(foo,bar,baz,fling,flung)
puts foo,bar,baz,fling,flung
end
end
Reek would report the following warning:
test.rb -- 1 warning:
[2]:Dummy#long_list has 5 parameters (LongParameterList)
A common solution to this problem would be the introduction of parameter objects.
Feature Envy occurs when a code fragment references another object more often than it references itself, or when several clients do the same series of manipulations on a particular type of object.
Feature Envy reduces the code's ability to communicate intent: code that "belongs" on one class but which is located in another can be hard to find, and may upset the "System of Names" in the host class.
Feature Envy also affects the design's flexibility: A code fragment that is in the wrong class creates couplings that may not be natural within the application's domain, and creates a loss of cohesion in the unwilling host class.
Feature Envy often arises because it must manipulate other objects (usually its arguments) to get them into a useful form, and one force preventing them (the arguments) doing this themselves is that the common knowledge lives outside the arguments, or the arguments are of too basic a type to justify extending that type. Therefore there must be something which 'knows' about the contents or purposes of the arguments. That thing would have to be more than just a basic type, because the basic types are either containers which don't know about their contents, or they are single objects which can't capture their relationship with their fellows of the same type. So, this thing with the extra knowledge should be reified into a class, and the utility method will most likely belong there.
Example
Running Reek on:
classWarehouse
defsale_price(item)
(item.price - item.rebate)*@vat
end
end
would report:
Warehouse#total_price refers to item more than self (FeatureEnvy)