lazycoder9/project-lvl3-s14

View on GitHub

Showing 15 of 15 total issues

Similar blocks of code found in 2 locations. Consider refactoring.
Open

    return `\nIt seems there was error.
${chalk.red(`Error: ${error.message}`)}
${chalk.red(`URL: ${link}`)}\n`;
Severity: Minor
Found in src/getFiles.js and 1 other location - About 50 mins to fix
src/loader.js on lines 35..37

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        message: `\nIt seems there was error.
${chalk.red(`Error: ${error.message}`)}
${chalk.red(`URL: ${urlLink}`)}\n`,
Severity: Minor
Found in src/loader.js and 1 other location - About 50 mins to fix
src/getFiles.js on lines 41..43

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 52.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

test('Link to folder', () => {
  const expected = 'ru-hexlet-io-courses_files';
  const actual = generateName(link, 'folder');
  expect(actual).toBe(expected);
});
Severity: Minor
Found in __tests__/parser-test.js and 2 other locations - About 35 mins to fix
__tests__/parser-test.js on lines 6..10
__tests__/parser-test.js on lines 18..22

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 47.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

test('Link to file', () => {
  const expected = 'cdn2-hexlet-io-assets-icons-default-favicon.ico';
  const actual = generateName(linkToFile, 'file');
  expect(actual).toBe(expected);
});
Severity: Minor
Found in __tests__/parser-test.js and 2 other locations - About 35 mins to fix
__tests__/parser-test.js on lines 6..10
__tests__/parser-test.js on lines 12..16

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 47.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Similar blocks of code found in 3 locations. Consider refactoring.
Open

test('Link to html', () => {
  const expected = 'ru-hexlet-io-courses.html';
  const actual = generateName(link, 'html');
  expect(actual).toBe(expected);
});
Severity: Minor
Found in __tests__/parser-test.js and 2 other locations - About 35 mins to fix
__tests__/parser-test.js on lines 12..16
__tests__/parser-test.js on lines 18..22

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 47.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Unexpected console statement.
Open

    console.log(errors.join(''));
Severity: Minor
Found in src/loader.js by eslint

disallow the use of console (no-console)

In JavaScript that is designed to be executed in the browser, it's considered a best practice to avoid using methods on console. Such messages are considered to be for debugging purposes and therefore not suitable to ship to the client. In general, calls using console should be stripped before being pushed to production.

console.log("Made it here.");
console.error("That shouldn't have happened.");

Rule Details

This rule disallows calls to methods of the console object.

Examples of incorrect code for this rule:

/*eslint no-console: "error"*/

console.log("Log a debug level message.");
console.warn("Log a warn level message.");
console.error("Log an error level message.");

Examples of correct code for this rule:

/*eslint no-console: "error"*/

// custom console
Console.log("Hello world!");

Options

This rule has an object option for exceptions:

  • "allow" has an array of strings which are allowed methods of the console object

Examples of additional correct code for this rule with a sample { "allow": ["warn", "error"] } option:

/*eslint no-console: ["error", { allow: ["warn", "error"] }] */

console.warn("Log a warn level message.");
console.error("Log an error level message.");

When Not To Use It

If you're using Node.js, however, console is used to output information to the user and so is not strictly used for debugging purposes. If you are developing for Node.js then you most likely do not want this rule enabled.

Related Rules

Expected to return a value at the end of arrow function.
Open

const replaceScriptUrl = (script, url) => {
Severity: Minor
Found in src/replaceUrls.js by eslint

require return statements to either always or never specify values (consistent-return)

Unlike statically-typed languages which enforce that a function returns a specified type of value, JavaScript allows different code paths in a function to return different types of values.

A confusing aspect of JavaScript is that a function returns undefined if any of the following are true:

  • it does not execute a return statement before it exits
  • it executes return which does not specify a value explicitly
  • it executes return undefined
  • it executes return void followed by an expression (for example, a function call)
  • it executes return followed by any other expression which evaluates to undefined

If any code paths in a function return a value explicitly but some code path do not return a value explicitly, it might be a typing mistake, especially in a large function. In the following example:

  • a code path through the function returns a Boolean value true
  • another code path does not return a value explicitly, therefore returns undefined implicitly
function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

Rule Details

This rule requires return statements to either always or never specify values. This rule ignores function definitions where the name begins with an uppercase letter, because constructors (when invoked with the new operator) return the instantiated object implicitly if they do not return another object explicitly.

Examples of incorrect code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

function doSomething(condition) {
    if (condition) {
        return true;
    }
}

Examples of correct code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return false;
    }
}

function Foo() {
    if (!(this instanceof Foo)) {
        return new Foo();
    }

    this.a = 0;
}

Options

This rule has an object option:

  • "treatUndefinedAsUnspecified": false (default) always either specify values or return undefined implicitly only.
  • "treatUndefinedAsUnspecified": true always either specify values or return undefined explicitly or implicitly.

treatUndefinedAsUnspecified

Examples of incorrect code for this rule with the default { "treatUndefinedAsUnspecified": false } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": false }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

Examples of incorrect code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    return true;
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    return true;
}

Examples of correct code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

When Not To Use It

If you want to allow functions to have different return behavior depending on code branching, then it is safe to disable this rule. Source: http://eslint.org/docs/rules/

Unexpected unnamed function.
Open

    $(item).each(function () {
Severity: Minor
Found in src/replaceUrls.js by eslint

Require or disallow named function expressions (func-names)

A pattern that's becoming more common is to give function expressions names to aid in debugging. For example:

Foo.prototype.bar = function bar() {};

Adding the second bar in the above example is optional. If you leave off the function name then when the function throws an exception you are likely to get something similar to anonymous function in the stack trace. If you provide the optional name for a function expression then you will get the name of the function expression in the stack trace.

Rule Details

This rule can enforce or disallow the use of named function expressions.

Options

This rule has a string option:

  • "always" (default) requires function expressions to have a name
  • "as-needed" requires function expressions to have a name, if the name cannot be assigned automatically in an ES6 environment
  • "never" disallows named function expressions, except in recursive functions, where a name is needed

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint func-names: ["error", "always"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Examples of correct code for this rule with the default "always" option:

/*eslint func-names: ["error", "always"]*/

Foo.prototype.bar = function bar() {};

(function bar() {
    // ...
}())

as-needed

ECMAScript 6 introduced a name property on all functions. The value of name is determined by evaluating the code around the function to see if a name can be inferred. For example, a function assigned to a variable will automatically have a name property equal to the name of the variable. The value of name is then used in stack traces for easier debugging.

Examples of incorrect code for this rule with the default "as-needed" option:

/*eslint func-names: ["error", "as-needed"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Examples of correct code for this rule with the default "as-needed" option:

/*eslint func-names: ["error", "as-needed"]*/

var bar = function() {};

(function bar() {
    // ...
}())

never

Examples of incorrect code for this rule with the "never" option:

/*eslint func-names: ["error", "never"]*/

Foo.prototype.bar = function bar() {};

(function bar() {
    // ...
}())

Examples of correct code for this rule with the "never" option:

/*eslint func-names: ["error", "never"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Further Reading

Compatibility

Unexpected console statement.
Open

      .then(res => console.log(res))
Severity: Minor
Found in src/bin/page-loader.js by eslint

disallow the use of console (no-console)

In JavaScript that is designed to be executed in the browser, it's considered a best practice to avoid using methods on console. Such messages are considered to be for debugging purposes and therefore not suitable to ship to the client. In general, calls using console should be stripped before being pushed to production.

console.log("Made it here.");
console.error("That shouldn't have happened.");

Rule Details

This rule disallows calls to methods of the console object.

Examples of incorrect code for this rule:

/*eslint no-console: "error"*/

console.log("Log a debug level message.");
console.warn("Log a warn level message.");
console.error("Log an error level message.");

Examples of correct code for this rule:

/*eslint no-console: "error"*/

// custom console
Console.log("Hello world!");

Options

This rule has an object option for exceptions:

  • "allow" has an array of strings which are allowed methods of the console object

Examples of additional correct code for this rule with a sample { "allow": ["warn", "error"] } option:

/*eslint no-console: ["error", { allow: ["warn", "error"] }] */

console.warn("Log a warn level message.");
console.error("Log an error level message.");

When Not To Use It

If you're using Node.js, however, console is used to output information to the user and so is not strictly used for debugging purposes. If you are developing for Node.js then you most likely do not want this rule enabled.

Related Rules

Expected to return a value at the end of function.
Open

    $(item).map(function () {
Severity: Minor
Found in src/getUrls.js by eslint

require return statements to either always or never specify values (consistent-return)

Unlike statically-typed languages which enforce that a function returns a specified type of value, JavaScript allows different code paths in a function to return different types of values.

A confusing aspect of JavaScript is that a function returns undefined if any of the following are true:

  • it does not execute a return statement before it exits
  • it executes return which does not specify a value explicitly
  • it executes return undefined
  • it executes return void followed by an expression (for example, a function call)
  • it executes return followed by any other expression which evaluates to undefined

If any code paths in a function return a value explicitly but some code path do not return a value explicitly, it might be a typing mistake, especially in a large function. In the following example:

  • a code path through the function returns a Boolean value true
  • another code path does not return a value explicitly, therefore returns undefined implicitly
function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

Rule Details

This rule requires return statements to either always or never specify values. This rule ignores function definitions where the name begins with an uppercase letter, because constructors (when invoked with the new operator) return the instantiated object implicitly if they do not return another object explicitly.

Examples of incorrect code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

function doSomething(condition) {
    if (condition) {
        return true;
    }
}

Examples of correct code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return false;
    }
}

function Foo() {
    if (!(this instanceof Foo)) {
        return new Foo();
    }

    this.a = 0;
}

Options

This rule has an object option:

  • "treatUndefinedAsUnspecified": false (default) always either specify values or return undefined implicitly only.
  • "treatUndefinedAsUnspecified": true always either specify values or return undefined explicitly or implicitly.

treatUndefinedAsUnspecified

Examples of incorrect code for this rule with the default { "treatUndefinedAsUnspecified": false } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": false }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

Examples of incorrect code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    return true;
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    return true;
}

Examples of correct code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

When Not To Use It

If you want to allow functions to have different return behavior depending on code branching, then it is safe to disable this rule. Source: http://eslint.org/docs/rules/

Unexpected unnamed function.
Open

    $(item).map(function () {
Severity: Minor
Found in src/getUrls.js by eslint

Require or disallow named function expressions (func-names)

A pattern that's becoming more common is to give function expressions names to aid in debugging. For example:

Foo.prototype.bar = function bar() {};

Adding the second bar in the above example is optional. If you leave off the function name then when the function throws an exception you are likely to get something similar to anonymous function in the stack trace. If you provide the optional name for a function expression then you will get the name of the function expression in the stack trace.

Rule Details

This rule can enforce or disallow the use of named function expressions.

Options

This rule has a string option:

  • "always" (default) requires function expressions to have a name
  • "as-needed" requires function expressions to have a name, if the name cannot be assigned automatically in an ES6 environment
  • "never" disallows named function expressions, except in recursive functions, where a name is needed

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint func-names: ["error", "always"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Examples of correct code for this rule with the default "always" option:

/*eslint func-names: ["error", "always"]*/

Foo.prototype.bar = function bar() {};

(function bar() {
    // ...
}())

as-needed

ECMAScript 6 introduced a name property on all functions. The value of name is determined by evaluating the code around the function to see if a name can be inferred. For example, a function assigned to a variable will automatically have a name property equal to the name of the variable. The value of name is then used in stack traces for easier debugging.

Examples of incorrect code for this rule with the default "as-needed" option:

/*eslint func-names: ["error", "as-needed"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Examples of correct code for this rule with the default "as-needed" option:

/*eslint func-names: ["error", "as-needed"]*/

var bar = function() {};

(function bar() {
    // ...
}())

never

Examples of incorrect code for this rule with the "never" option:

/*eslint func-names: ["error", "never"]*/

Foo.prototype.bar = function bar() {};

(function bar() {
    // ...
}())

Examples of correct code for this rule with the "never" option:

/*eslint func-names: ["error", "never"]*/

Foo.prototype.bar = function() {};

(function() {
    // ...
}())

Further Reading

Compatibility

Unexpected console statement.
Open

      .catch(error => console.log(error));
Severity: Minor
Found in src/bin/page-loader.js by eslint

disallow the use of console (no-console)

In JavaScript that is designed to be executed in the browser, it's considered a best practice to avoid using methods on console. Such messages are considered to be for debugging purposes and therefore not suitable to ship to the client. In general, calls using console should be stripped before being pushed to production.

console.log("Made it here.");
console.error("That shouldn't have happened.");

Rule Details

This rule disallows calls to methods of the console object.

Examples of incorrect code for this rule:

/*eslint no-console: "error"*/

console.log("Log a debug level message.");
console.warn("Log a warn level message.");
console.error("Log an error level message.");

Examples of correct code for this rule:

/*eslint no-console: "error"*/

// custom console
Console.log("Hello world!");

Options

This rule has an object option for exceptions:

  • "allow" has an array of strings which are allowed methods of the console object

Examples of additional correct code for this rule with a sample { "allow": ["warn", "error"] } option:

/*eslint no-console: ["error", { allow: ["warn", "error"] }] */

console.warn("Log a warn level message.");
console.error("Log an error level message.");

When Not To Use It

If you're using Node.js, however, console is used to output information to the user and so is not strictly used for debugging purposes. If you are developing for Node.js then you most likely do not want this rule enabled.

Related Rules

Expected to return a value at the end of function.
Open

    $(item).map(function () {
Severity: Minor
Found in src/getUrls.js by eslint

Enforces return statements in callbacks of array's methods (array-callback-return)

Array has several methods for filtering, mapping, and folding. If we forget to write return statement in a callback of those, it's probably a mistake.

// example: convert ['a', 'b', 'c'] --> {a: 0, b: 1, c: 2}
var indexMap = myArray.reduce(function(memo, item, index) {
  memo[item] = index;
}, {}); // Error: cannot set property 'b' of undefined

This rule enforces usage of return statement in callbacks of array's methods.

Rule Details

This rule finds callback functions of the following methods, then checks usage of return statement.

Examples of incorrect code for this rule:

/*eslint array-callback-return: "error"*/

var indexMap = myArray.reduce(function(memo, item, index) {
    memo[item] = index;
}, {});

var foo = Array.from(nodes, function(node) {
    if (node.tagName === "DIV") {
        return true;
    }
});

var bar = foo.filter(function(x) {
    if (x) {
        return true;
    } else {
        return;
    }
});

Examples of correct code for this rule:

/*eslint array-callback-return: "error"*/

var indexMap = myArray.reduce(function(memo, item, index) {
    memo[item] = index;
    return memo;
}, {});

var foo = Array.from(nodes, function(node) {
    if (node.tagName === "DIV") {
        return true;
    }
    return false;
});

var bar = foo.map(node => node.getAttribute("id"));

Known Limitations

This rule checks callback functions of methods with the given names, even if the object which has the method is not an array.

When Not To Use It

If you don't want to warn about usage of return statement in callbacks of array's methods, then it's safe to disable this rule. Source: http://eslint.org/docs/rules/

Missing semicolon.
Open

const linkToFile = 'https://cdn2.hexlet.io/assets/icons/default/favicon.ico'
Severity: Minor
Found in __tests__/parser-test.js by eslint

require or disallow semicolons instead of ASI (semi)

JavaScript is unique amongst the C-like languages in that it doesn't require semicolons at the end of each statement. In many cases, the JavaScript engine can determine that a semicolon should be in a certain spot and will automatically add it. This feature is known as automatic semicolon insertion (ASI) and is considered one of the more controversial features of JavaScript. For example, the following lines are both valid:

var name = "ESLint"
var website = "eslint.org";

On the first line, the JavaScript engine will automatically insert a semicolon, so this is not considered a syntax error. The JavaScript engine still knows how to interpret the line and knows that the line end indicates the end of the statement.

In the debate over ASI, there are generally two schools of thought. The first is that we should treat ASI as if it didn't exist and always include semicolons manually. The rationale is that it's easier to always include semicolons than to try to remember when they are or are not required, and thus decreases the possibility of introducing an error.

However, the ASI mechanism can sometimes be tricky to people who are using semicolons. For example, consider this code:

return
{
    name: "ESLint"
};

This may look like a return statement that returns an object literal, however, the JavaScript engine will interpret this code as:

return;
{
    name: "ESLint";
}

Effectively, a semicolon is inserted after the return statement, causing the code below it (a labeled literal inside a block) to be unreachable. This rule and the [no-unreachable](no-unreachable.md) rule will protect your code from such cases.

On the other side of the argument are those who says that since semicolons are inserted automatically, they are optional and do not need to be inserted manually. However, the ASI mechanism can also be tricky to people who don't use semicolons. For example, consider this code:

var globalCounter = { }

(function () {
    var n = 0
    globalCounter.increment = function () {
        return ++n
    }
})()

In this example, a semicolon will not be inserted after the first line, causing a run-time error (because an empty object is called as if it's a function). The [no-unexpected-multiline](no-unexpected-multiline.md) rule can protect your code from such cases.

Although ASI allows for more freedom over your coding style, it can also make your code behave in an unexpected way, whether you use semicolons or not. Therefore, it is best to know when ASI takes place and when it does not, and have ESLint protect your code from these potentially unexpected cases. In short, as once described by Isaac Schlueter, a \n character always ends a statement (just like a semicolon) unless one of the following is true:

  1. The statement has an unclosed paren, array literal, or object literal or ends in some other way that is not a valid way to end a statement. (For instance, ending with . or ,.)
  2. The line is -- or ++ (in which case it will decrement/increment the next token.)
  3. It is a for(), while(), do, if(), or else, and there is no {
  4. The next line starts with [, (, +, *, /, -, ,, ., or some other binary operator that can only be found between two tokens in a single expression.

Rule Details

This rule enforces consistent use of semicolons.

Options

This rule has two options, a string option and an object option.

String option:

  • "always" (default) requires semicolons at the end of statements
  • "never" disallows semicolons as the end of statements (except to disambiguate statements beginning with [, (, /, +, or -)

Object option:

  • "omitLastInOneLineBlock": true ignores the last semicolon in a block in which its braces (and therefore the content of the block) are in the same line

always

Examples of incorrect code for this rule with the default "always" option:

/*eslint semi: ["error", "always"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

Examples of correct code for this rule with the default "always" option:

/*eslint semi: "error"*/

var name = "ESLint";

object.method = function() {
    // ...
};

never

Examples of incorrect code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint";

object.method = function() {
    // ...
};

Examples of correct code for this rule with the "never" option:

/*eslint semi: ["error", "never"]*/

var name = "ESLint"

object.method = function() {
    // ...
}

var name = "ESLint"

;(function() {
    // ...
})()

omitLastInOneLineBlock

Examples of additional correct code for this rule with the "always", { "omitLastInOneLineBlock": true } options:

/*eslint semi: ["error", "always", { "omitLastInOneLineBlock": true}] */

if (foo) { bar() }

if (foo) { bar(); baz() }

When Not To Use It

If you do not want to enforce semicolon usage (or omission) in any particular way, then you can turn this rule off.

Further Reading

Related Rules

  • [no-extra-semi](no-extra-semi.md)
  • [no-unexpected-multiline](no-unexpected-multiline.md)
  • [semi-spacing](semi-spacing.md) Source: http://eslint.org/docs/rules/

Expected to return a value at the end of async arrow function.
Open

const downloadFile = async (link, spinnerID, pathToFile, spinners) => {
Severity: Minor
Found in src/getFiles.js by eslint

require return statements to either always or never specify values (consistent-return)

Unlike statically-typed languages which enforce that a function returns a specified type of value, JavaScript allows different code paths in a function to return different types of values.

A confusing aspect of JavaScript is that a function returns undefined if any of the following are true:

  • it does not execute a return statement before it exits
  • it executes return which does not specify a value explicitly
  • it executes return undefined
  • it executes return void followed by an expression (for example, a function call)
  • it executes return followed by any other expression which evaluates to undefined

If any code paths in a function return a value explicitly but some code path do not return a value explicitly, it might be a typing mistake, especially in a large function. In the following example:

  • a code path through the function returns a Boolean value true
  • another code path does not return a value explicitly, therefore returns undefined implicitly
function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

Rule Details

This rule requires return statements to either always or never specify values. This rule ignores function definitions where the name begins with an uppercase letter, because constructors (when invoked with the new operator) return the instantiated object implicitly if they do not return another object explicitly.

Examples of incorrect code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return;
    }
}

function doSomething(condition) {
    if (condition) {
        return true;
    }
}

Examples of correct code for this rule:

/*eslint consistent-return: "error"*/

function doSomething(condition) {
    if (condition) {
        return true;
    } else {
        return false;
    }
}

function Foo() {
    if (!(this instanceof Foo)) {
        return new Foo();
    }

    this.a = 0;
}

Options

This rule has an object option:

  • "treatUndefinedAsUnspecified": false (default) always either specify values or return undefined implicitly only.
  • "treatUndefinedAsUnspecified": true always either specify values or return undefined explicitly or implicitly.

treatUndefinedAsUnspecified

Examples of incorrect code for this rule with the default { "treatUndefinedAsUnspecified": false } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": false }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

Examples of incorrect code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    return true;
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    return true;
}

Examples of correct code for this rule with the { "treatUndefinedAsUnspecified": true } option:

/*eslint consistent-return: ["error", { "treatUndefinedAsUnspecified": true }]*/

function foo(callback) {
    if (callback) {
        return void callback();
    }
    // no return statement
}

function bar(condition) {
    if (condition) {
        return undefined;
    }
    // no return statement
}

When Not To Use It

If you want to allow functions to have different return behavior depending on code branching, then it is safe to disable this rule. Source: http://eslint.org/docs/rules/

Severity
Category
Status
Source
Language