matteoferla/Fragmenstein

View on GitHub
fragmenstein/faux_victors/no_pyrosetta.py

Summary

Maintainability
A
25 mins
Test Coverage
from rdkit import Chem
from ..victor import Victor
from ..m_rmsd import mRMSD
import os, json
from rdkit_to_params import Params
from rdkit import Chem
from rdkit.Chem import AllChem

class Wictor(Victor):
    """
    This Victor does not call Igor

    ... code-block:: python
        from framgenstein.faux_victors import Wictor
        from fragmenstein.demo import Mac1

        Wictor.capture_rdkit_log()
        # Wictor.enable_stdout()
        Wictor.error_to_catch = ()
        wicky = Wictor(hits=Mac1.get_n_filtered_mols(2),
                       pdb_block=Mac1.get_template(),
                       )
        wicky.combine()
    """
    uses_pyrosetta = False

    def _process_settings(self):
        self.journal.debug('Valid settings.py: ff_max_displacement, ff_constraint=1, ff_max_iterations')

    def _calculate_combination_thermo(self):
        # override igor.
        self._calculate_thermo_common()
        # save to disc
        self._checkpoint_charlie()

    def _calculate_placement_thermo(self):
        # override igor.
        self._calculate_thermo_common()
        # save to disc
        self._checkpoint_charlie()

    def _checkpoint_charlie(self):
        # making folder.
        self.make_output_folder()
        # no igor!
        self._log_warnings()
        self.journal.debug(f'{self.long_name} - saving pose collage')
        min_file = os.path.join(self.work_path, self.long_name, self.long_name + '.holo_minimised.pdb')
        with open(min_file, 'w') as w:
            w.write(self.minimized_pdbblock)
        self.journal.debug(f'{self.long_name} - saving Gibbs')
        # recover bonds
        lig_file = os.path.join(self.work_path, self.long_name, self.long_name + '.minimised.mol')
        Chem.MolToMolFile(self.minimized_mol, lig_file)
        score_file = os.path.join(self.work_path, self.long_name, self.long_name + '.minimised.json')
        with open(score_file, 'w') as w:
            json.dump({'Energy': self.energy_score,
                       'mRMSD': self.mrmsd.mrmsd,
                       'RMSDs': self.mrmsd.rmsds}, w)
        self._log_warnings()

    def _calculate_thermo_common(self):
        """
        This method is common to both combination and placement and is unique to Wictor
        as both ``_calculate_combination_thermo`` and ``_calculate_placement_thermo`` are overridden
        and do the same here.
        """
        # in _calculate_*_chem this was set:
        # self.mol = self.monster.positioned_mol
        # I need to assign atom names and stuff still:
        self.params = Params.from_mol(self.mol, name=self.ligand_resn, generic=True)
        self.params.NAME = self.ligand_resn  # force it.
        self.params.polish_mol()
        self.params.comments.clear()
        self.params.comments.append('Generated via Fragmenstein')
        if self.settings['ff_use_neighborhood']:  # default True
            neighborhood = self.monster.get_neighborhood(self.apo_pdbblock,
                                                         cutoff=self.settings['ff_neighborhood'],
                                                         addHs=True)
        else:
            neighborhood = None
        # allow_lax reduces the constraints if it fails
        min_result = self.monster.mmff_minimize(self.mol,
                                                neighborhood=neighborhood,
                                                ff_max_displacement=float(self.settings['ff_max_displacement']), # def 0
                                                ff_constraint=int(self.settings['ff_constraint']), # def 10
                                                ff_max_iterations=int(self.settings['ff_max_iterations']), # def 200
                                                allow_lax=True)
        self.minimized_mol: Chem.Mol = min_result.mol
        self.minimized_pdbblock: str = self._plonk_monster_in_structure(prepped_mol=self.minimized_mol)
        # The ddG is how strained the molecule is out of the protein... not the drop from binding.
        # recalculating:
        # min_result.ideal is with ff_minimise_ideal True
        ideal: Chem.Mol = self.monster.make_ideal_mol(ff_minimise=bool(self.settings['ff_minimise_ideal']))
        if neighborhood: # option ``ff_use_neighborhood`` is False. Why one would do this?
            AllChem.SanitizeMol(neighborhood)
        ideal_E: float = float('nan')
        ligand_E: float = float('nan')
        holo_E: float = float('nan')
        apo_E: float = float('nan')
        if 'Energy' not in self.minimized_mol.GetPropNames():
            self.ddG = float('nan')
            self.mrmsd: mRMSD = self._calculate_rmsd()
        elif neighborhood is None:
            ideal_E = ideal.GetDoubleProp('Energy')
            ligand_E = self.minimized_mol.GetDoubleProp('Energy')
        else:
            ideal_E = ideal.GetDoubleProp('Energy')
            ligand_E = self.minimized_mol.GetDoubleProp('Energy')
            # The holo needs recalculating as I don't want the constraints
            holo_E = self.monster.MMFF_score(Chem.CombineMols(self.minimized_mol, neighborhood), delta=False)
            apo_E = self.monster.MMFF_score(neighborhood, delta=False)
        # store data:
        self.energy_score['ideal'] = dict(total_score=ideal_E, unit='kcal/mol')
        self.energy_score['insitu'] = dict(total_score=ligand_E, unit='kcal/mol')
        self.energy_score['bound'] = dict(total_score=holo_E, unit='kcal/mol')
        self.energy_score['unbound'] = dict(total_score=apo_E + ideal_E, unit='kcal/mol')
        self.energy_score['apo'] = dict(total_score=apo_E, unit='kcal/mol')
        self.ddG: float = holo_E - apo_E - ideal_E
        self.mrmsd: mRMSD = self._calculate_rmsd()