src/Algorithm/GradientDescent/Gradient/Linear.php
<?php
declare(strict_types = 1);
namespace MCordingley\Regression\Algorithm\GradientDescent\Gradient;
final class Linear implements Gradient
{
/** @var int */
private $power;
/**
* @param int $power
*/
public function __construct(int $power = 2)
{
$this->power = $power;
}
/**
* @param array $coefficients
* @param array $features
* @param float $outcome
* @return float
*/
public function cost(array $coefficients, array $features, float $outcome): float
{
return (float) pow(abs($this->predicted($coefficients, $features) - $outcome), $this->power);
}
/**
* @param array $coefficients
* @param array $features
* @return float
*/
private function predicted(array $coefficients, array $features): float
{
return (float) array_sum(array_map(function ($coefficient, $feature) {
return $coefficient * $feature;
}, $coefficients, $features));
}
/**
* @param array $coefficients
* @param array $features
* @param float $outcome
* @return array
*/
public function gradient(array $coefficients, array $features, float $outcome): array
{
$error = $this->predicted($coefficients, $features) - $outcome;
$errorSign = $error < 0 ? -1 : 1;
$iterationConstant = $errorSign * $this->power * pow(abs($error), $this->power - 1);
return array_map(function ($feature) use ($iterationConstant) {
return $iterationConstant * $feature;
}, $features);
}
}