Method SaveResult
has 74 lines of code (exceeds 25 allowed). Consider refactoring. Open
private async Task<int> SaveResult(Response resp, string respXml, MicrotingDbContext dbContext,
int microtingUid, int? checkIdLastKnown, CaseDto aCase)
{
XmlDocument xDoc = new XmlDocument();
Method CheckStatusByMicrotingUid
has 68 lines of code (exceeds 25 allowed). Consider refactoring. Open
private async Task<bool> CheckStatusByMicrotingUid(int microtingUid)
{
await using MicrotingDbContext dbContext = _core.DbContextHelper.GetDbContext();
List<CaseDto> lstCase = new List<CaseDto>();
Method CheckStatusByMicrotingUid
has a Cognitive Complexity of 25 (exceeds 20 allowed). Consider refactoring. Open
private async Task<bool> CheckStatusByMicrotingUid(int microtingUid)
{
await using MicrotingDbContext dbContext = _core.DbContextHelper.GetDbContext();
List<CaseDto> lstCase = new List<CaseDto>();
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Avoid deeply nested control flow statements. Open
if (resp.Checks.Count > 0)
{
await SaveResult(resp, respXml, dbContext, microtingUid, null, aCase)
.ConfigureAwait(false);
noResults = false;
Method SaveResult
has 6 arguments (exceeds 4 allowed). Consider refactoring. Open
private async Task<int> SaveResult(Response resp, string respXml, MicrotingDbContext dbContext,
int microtingUid, int? checkIdLastKnown, CaseDto aCase)
Method FetchData
has 5 arguments (exceeds 4 allowed). Consider refactoring. Open
private bool FetchData(string microtingUid, CaseDto concreteCase, string checkIdLastKnown, ref string respXml,
ref Response resp)
Similar blocks of code found in 3 locations. Consider refactoring. Open
catch (Exception ex)
{
await _sqlController.NotificationUpdate(message.NotificationUId, message.MicrotringUUID,
Constants.WorkflowStates.NotFound, ex.Message, ex.StackTrace);
NoteDto noteDto = new NoteDto(message.NotificationUId, message.MicrotringUUID,
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 102.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76