lib/polynomial_division.rb
module Silicium
module Algebra
##
# TODO: class docs
class PolynomialDivision
DELTA = 0.01
# This function returns an array of coefficients obtained by parsing input string in format: "<coeff>*x**<degree>+..."
# Even if in your expression don't exist x with some degree, you should to write it with 0 coefficient
# Also free term you should to write with 0 degree
# Example: "2*x**5-3*x**4+0*x**3+0*x**2-5*x**1-6*x**0"
def polynom_parser(str)
copy_str = str.clone
sgn_array = [] # Array of signs
if copy_str[0] != '-'
sgn_array.push('+')
else
sgn_array.push('-')
copy_str[0] = ''
end
token = copy_str.split(/[-+]/)
(0..copy_str.size-1).each do |i|
sgn_array.push(copy_str[i]) if copy_str[i] == '-' || copy_str[i] == '+'
end
size = token.size - 1
coeff = [] # Array of coefficients
(0..size).each do |i|
degree = token[i].split('*') # Split by '*' to get coefficient and degree
degree[0] == 'x' ? coeff[i] = 1.0 : coeff[i] = degree[0].to_f
coeff[i] *= -1 if sgn_array[i] == '-'
end
coeff
end
# String implementation of result
def str_res_impl(coeff_res, sgn_array)
res_size = coeff_res.size
res_exp = ""
(0..res_size-1).each do |i|
res_exp += ((coeff_res[i].ceil(3)).to_s+"*x**"+(res_size - i - 1).to_s)
res_exp += sgn_array[i+1] if sgn_array[i+1] != '-'
end
res_exp
end
# String implementation of remained part
def str_rem_impl(coeff_1)
c = coeff_1.size
rem_exp = ""
(0..c-1).each do |i|
rem_exp += '+' if coeff_1[i] >= 0.0
rem_exp += ((coeff_1[i].ceil(3)).to_s+"*x**"+(c - i - 1).to_s)
end
rem_exp[0] = '' if rem_exp[0] == '+'
rem_exp
end
# This function returns array of 2 strings: first is the result of division polynom poly_1 on polynom poly_2
# Second - remainder
def polynom_division(poly_1, poly_2)
coeff_1 = polynom_parser(poly_1)
coeff_2 = polynom_parser(poly_2)
res_size = coeff_1.size - coeff_2.size + 1
coeff_result = Array.new(res_size)
sgn_array = Array.new(res_size + 1,'')
(0..res_size-1).each do |i|
cur_coeff = coeff_1[i] / coeff_2[0]
coeff_result[i] = cur_coeff
coeff_result[i] < 0 ? sgn_array[i] = '-' : sgn_array[i] = '+'
(0..coeff_2.size-1).each do |j|
coeff_1[i+j] -= coeff_2[j]*cur_coeff
end
end
res_exp = str_res_impl(coeff_result, sgn_array)
rem_exp = str_rem_impl(coeff_1[coeff_result.size..coeff_1.size-1])
[res_exp, rem_exp]
end
def compare_polynoms(poly1, poly2)
polynom_parser(poly1).size - polynom_parser(poly2).size
end
def zero_coeffs?(polynom, delta = DELTA)
polynom_parser(polynom).all?{ |item| item.abs < delta }
end
def round_coeffs(coefficients, delta = DELTA)
coefficients.map do |element|
(element.round - element).abs < delta ? element.round.to_f : element
end
end
def build_polynom_from_coeffs(coefficients)
"#{coefficients[0]}*x**#{coefficients.size - 1}" +
coefficients[1..-1].each_with_index.inject('') do |acc, (coefficient, index)|
leading_sign = coefficient >= 0 ? '+' : ''
acc + "#{leading_sign}#{coefficient}*x**#{ coefficients.size - index - 2 }"
end
end
# This function returns a string: greatest common integer divisor of two polynoms
def polynom_gcd(poly1, poly2, delta = DELTA)
divisor, remainder = order_gcd_operands(poly1, poly2)
until zero_coeffs?(remainder) do
division = polynom_division(divisor, remainder)
divisor = remainder
remainder = division[1]
end
normalizer = polynom_parser(divisor)[0]
temp_result = polynom_division(divisor, normalizer.to_s+'*x**0')[0]
coefficients = round_coeffs(polynom_parser(temp_result), delta)
build_polynom_from_coeffs(coefficients)
end
private
def order_gcd_operands(poly1, poly2)
if compare_polynoms(poly1, poly2) >= 0
divisor = poly2
remainder = polynom_division(poly1, divisor)[1]
else
divisor = poly1
remainder = polynom_division(poly2, divisor)[1]
end
[divisor, remainder]
end
end
end
end