embiggen/edge_prediction/edge_prediction_lightgbm/lgbm_edge_prediction.py
"""Edge prediction model based on LightGBM.""" ""
from typing import Dict, Union, Any, List
from lightgbm import LGBMClassifier
from embiggen.edge_prediction.sklearn_like_edge_prediction_adapter import (
SklearnLikeEdgePredictionAdapter,
)
from embiggen.utils.normalize_kwargs import normalize_kwargs
class LightGBMEdgePredictionModel(SklearnLikeEdgePredictionAdapter):
"""Edge prediction model based on LightGBM."""
def __init__(
self,
boosting_type: str = "gbdt",
num_leaves: int = 31,
max_depth: int = -1,
learning_rate: float = 0.1,
n_estimators: int = 100,
subsample_for_bin: int = 200000,
class_weight: Union[Dict, str] = "balanced",
min_split_gain: float = 0.0,
min_child_weight: float = 0.001,
min_child_samples: int = 20,
subsample: float = 1.0,
subsample_freq: int = 0,
colsample_bytree: float = 1.0,
reg_alpha: float = 0.0,
reg_lambda: float = 0.0,
n_jobs: int = -1,
importance_type: str = "split",
edge_embedding_methods: Union[List[str], str] = "Concatenate",
training_unbalance_rate: float = 1.0,
use_edge_metrics: bool = False,
use_scale_free_distribution: bool = True,
prediction_batch_size: int = 2**12,
random_state: int = 42,
**kwargs: Dict,
):
"""Build a LightGBM Edge prediction model.
Parameters
--------------------------
boosting_type: str = "gbdt",
The type of boosting to use.
num_leaves: int = 31,
The number of leaves to use.
max_depth: int = -1,
The maximum depth of the tree.
learning_rate: float = 0.1,
The learning rate to use.
n_estimators: int = 100,
The number of estimators to use.
subsample_for_bin: int = 200000,
The number of samples to use for binning.
class_weight: Union[Dict, str] = "balanced",
The class weight to use.
min_split_gain: float = 0.0,
The minimum split gain to use.
min_child_weight: float = 0.001,
The minimum child weight to use.
min_child_samples: int = 20,
The minimum number of child samples to use.
subsample: float = 1.0,
The subsample to use.
subsample_freq: int = 0,
The subsample frequency to use.
colsample_bytree: float = 1.0,
The column sample by tree to use.
reg_alpha: float = 0.0,
The regularization alpha to use.
reg_lambda: float = 0.0,
The regularization lambda to use.
n_jobs: int = -1,
The number of jobs to use.
importance_type: str = "split",
The importance type to use.
edge_embedding_method: Union[List[str], str] = "Concatenate",
The method(s) to use to compute the edges.
If multiple edge embedding are provided, they
will be Concatenated and fed to the model.
The supported edge embedding methods are:
* Hadamard: element-wise product
* Sum: element-wise sum
* Average: element-wise mean
* L1: element-wise subtraction
* AbsoluteL1: element-wise subtraction in absolute value
* SquaredL2: element-wise subtraction in squared value
* L2: element-wise squared root of squared subtraction
* Concatenate: Concatenate of source and destination node features
* Min: element-wise minimum
* Max: element-wise maximum
* L2Distance: vector-wise L2 distance - this yields a scalar
* CosineSimilarity: vector-wise cosine similarity - this yields a scalar
use_edge_metrics: bool = False
Whether to use the edge metrics from traditional edge prediction.
These metrics currently include:
- Adamic Adar
- Jaccard Coefficient
- Resource allocation index
- Preferential attachment
random_state: int = 42
The random state to use to reproduce the training.
**kwargs: Dict,
Additional keyword arguments to pass to the model.
"""
self._kwargs = normalize_kwargs(
self,
dict(
boosting_type=boosting_type,
num_leaves=num_leaves,
max_depth=max_depth,
learning_rate=learning_rate,
n_estimators=n_estimators,
subsample_for_bin=subsample_for_bin,
class_weight=class_weight,
min_split_gain=min_split_gain,
min_child_weight=min_child_weight,
min_child_samples=min_child_samples,
subsample=subsample,
subsample_freq=subsample_freq,
colsample_bytree=colsample_bytree,
reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
n_jobs=n_jobs,
importance_type=importance_type,
**kwargs,
)
)
model_instance = LGBMClassifier(
**self._kwargs,
random_state=random_state,
)
super().__init__(
model_instance=model_instance,
edge_embedding_methods=edge_embedding_methods,
training_unbalance_rate=training_unbalance_rate,
use_edge_metrics=use_edge_metrics,
use_scale_free_distribution=use_scale_free_distribution,
prediction_batch_size=prediction_batch_size,
)
def parameters(self) -> Dict[str, Any]:
return dict(
**super().parameters(),
**self._kwargs,
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
return dict(
n_estimators=2,
max_depth=2,
)
@classmethod
def model_name(cls) -> str:
"""Return the name of the model."""
return "LightGBM"
@classmethod
def library_name(cls) -> str:
"""Return name of the model."""
return "LightGBM"