embiggen/edge_prediction/edge_prediction_sklearn/extra_trees_edge_prediction.py
"""Submodule wrapping Extra Trees for edge prediction."""
from typing import Dict, Any, Union, List
from sklearn.ensemble import ExtraTreesClassifier
from embiggen.edge_prediction.edge_prediction_sklearn.decision_tree_edge_prediction import DecisionTreeEdgePrediction
from embiggen.edge_prediction.edge_prediction_sklearn.sklearn_edge_prediction_adapter import SklearnEdgePredictionAdapter
from embiggen.utils.normalize_kwargs import normalize_kwargs
class ExtraTreesEdgePrediction(SklearnEdgePredictionAdapter):
"""Create wrapper over Sklearn Extra Trees classifier for edge prediction."""
def __init__(
self,
n_estimators: int = 1000,
criterion: str = "gini",
max_depth: int = 10,
min_samples_split: int = 2,
min_samples_leaf: int = 1,
min_weight_fraction_leaf: float = 0.,
max_features="sqrt",
max_leaf_nodes=None,
min_impurity_decrease=0.,
bootstrap=True,
oob_score=False,
n_jobs=-1,
verbose=0,
warm_start=False,
ccp_alpha=0.0,
max_samples=None,
edge_embedding_methods: Union[List[str], str] = "Concatenate",
training_unbalance_rate: float = 1.0,
use_edge_metrics: bool = False,
use_scale_free_distribution: bool = True,
prediction_batch_size: int = 2**12,
random_state: int = 42
):
"""Create the Extra Trees for Edge Prediction."""
self._tree_kwargs = normalize_kwargs(
self,
dict(
n_estimators=n_estimators,
criterion=criterion,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
ccp_alpha=ccp_alpha,
max_samples=max_samples,
)
)
super().__init__(
ExtraTreesClassifier(
**self._tree_kwargs
),
edge_embedding_methods=edge_embedding_methods,
training_unbalance_rate=training_unbalance_rate,
use_edge_metrics=use_edge_metrics,
use_scale_free_distribution=use_scale_free_distribution,
prediction_batch_size=prediction_batch_size,
random_state=random_state
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
**DecisionTreeEdgePrediction.smoke_test_parameters(),
n_estimators=1
)
def parameters(self) -> Dict[str, Any]:
"""Returns parameters used for this model."""
return {
**super().parameters(),
**self._tree_kwargs
}
@classmethod
def model_name(cls) -> str:
return "Extra Trees Classifier"