embiggen/edge_prediction/edge_prediction_sklearn/gradient_boosting_edge_prediction.py
"""Submodule wrapping Gradient Boosting for edge prediction."""
from typing import Dict, Any, Union, List
from sklearn.ensemble import GradientBoostingClassifier
from embiggen.edge_prediction.edge_prediction_sklearn.sklearn_edge_prediction_adapter import SklearnEdgePredictionAdapter
from embiggen.utils.normalize_kwargs import normalize_kwargs
class GradientBoostingEdgePrediction(SklearnEdgePredictionAdapter):
"""Create wrapper over Sklearn Gradient Boosting classifier for edge prediction."""
def __init__(
self,
loss='log_loss',
learning_rate=0.1,
n_estimators=100,
subsample=1.0,
criterion='friedman_mse',
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_depth=3,
min_impurity_decrease=0.,
init=None,
max_features="sqrt",
verbose=0,
max_leaf_nodes=None,
warm_start=False,
validation_fraction=0.1,
n_iter_no_change=None,
tol=1e-4,
ccp_alpha=0.0,
edge_embedding_methods: Union[List[str], str] = "Concatenate",
training_unbalance_rate: float = 1.0,
use_edge_metrics: bool = False,
use_scale_free_distribution: bool = True,
prediction_batch_size: int = 2**12,
random_state: int = 42
):
"""Create the Gradient Boosting for Edge Prediction."""
self._tree_kwargs = normalize_kwargs(
self,
dict(
loss=loss,
learning_rate=learning_rate,
n_estimators=n_estimators,
criterion=criterion,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
min_weight_fraction_leaf=min_weight_fraction_leaf,
max_depth=max_depth,
verbose=verbose,
init=init,
subsample=subsample,
max_features=max_features,
max_leaf_nodes=max_leaf_nodes,
min_impurity_decrease=min_impurity_decrease,
warm_start=warm_start,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
tol=tol,
ccp_alpha=ccp_alpha,
)
)
super().__init__(
GradientBoostingClassifier(
**self._tree_kwargs
),
edge_embedding_methods=edge_embedding_methods,
training_unbalance_rate=training_unbalance_rate,
use_edge_metrics=use_edge_metrics,
use_scale_free_distribution=use_scale_free_distribution,
prediction_batch_size=prediction_batch_size,
random_state=random_state
)
def parameters(self) -> Dict[str, Any]:
"""Returns parameters used for this model."""
return {
**super().parameters(),
**self._tree_kwargs
}
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
max_depth=1,
n_estimators=1
)
@classmethod
def model_name(cls) -> str:
return "Gradient Boosting Classifier"