embiggen/edge_prediction/edge_prediction_sklearn/hist_gradient_boosting_classifier.py
"""Submodule wrapping Gradient Boosting for edge prediction."""
from typing import Dict, Any, Union, List
from sklearn.ensemble import HistGradientBoostingClassifier
from embiggen.edge_prediction.edge_prediction_sklearn.sklearn_edge_prediction_adapter import SklearnEdgePredictionAdapter
from embiggen.utils.normalize_kwargs import normalize_kwargs
class HistGradientBoostingEdgePrediction(SklearnEdgePredictionAdapter):
"""Create wrapper over Sklearn Hist Gradient Boosting classifier for edge prediction."""
def __init__(
self,
loss='log_loss',
learning_rate=0.1,
max_iter: int = 100,
max_leaf_nodes: int = 31,
max_depth: int = 3,
min_samples_leaf: int = 20,
l2_regularization: float = 0.,
max_bins: int = 255,
categorical_features=None,
monotonic_cst=None,
interaction_cst=None,
warm_start=False,
early_stopping="auto",
scoring="loss",
validation_fraction=0.1,
n_iter_no_change=10,
tol=1e-7,
verbose=0,
class_weight="balanced",
edge_embedding_methods: Union[List[str], str] = "Concatenate",
training_unbalance_rate: float = 1.0,
use_edge_metrics: bool = False,
use_scale_free_distribution: bool = True,
prediction_batch_size: int = 2**12,
random_state: int = 42
):
"""Create the Hist Gradient Boosting for Edge Prediction."""
self._kwargs = normalize_kwargs(
self,
dict(
loss=loss,
learning_rate=learning_rate,
max_iter=max_iter,
max_leaf_nodes=max_leaf_nodes,
max_depth=max_depth,
min_samples_leaf=min_samples_leaf,
l2_regularization=l2_regularization,
max_bins=max_bins,
categorical_features=categorical_features,
monotonic_cst=monotonic_cst,
interaction_cst=interaction_cst,
warm_start=warm_start,
early_stopping=early_stopping,
scoring=scoring,
validation_fraction=validation_fraction,
n_iter_no_change=n_iter_no_change,
tol=tol,
verbose=verbose,
class_weight=class_weight,
)
)
super().__init__(
HistGradientBoostingClassifier(
**self._kwargs,
random_state=random_state
),
edge_embedding_methods=edge_embedding_methods,
training_unbalance_rate=training_unbalance_rate,
use_edge_metrics=use_edge_metrics,
use_scale_free_distribution=use_scale_free_distribution,
prediction_batch_size=prediction_batch_size,
random_state=random_state
)
def parameters(self) -> Dict[str, Any]:
"""Returns parameters used for this model."""
return {
**super().parameters(),
**self._kwargs
}
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
max_depth=1,
max_iter=2
)
@classmethod
def model_name(cls) -> str:
return "Hist Gradient Boosting Classifier"