embiggen/embedders/ensmallen_embedders/score_spine.py
"""Module providing Score-based SPINE implementation."""
from typing import Optional, Dict, Any
from ensmallen import Graph
import pandas as pd
import numpy as np
from ensmallen import models
from embiggen.embedders.ensmallen_embedders.ensmallen_embedder import EnsmallenEmbedder
from embiggen.utils import EmbeddingResult
class ScoreSPINE(EnsmallenEmbedder):
"""Class implementing the Score-based SPINE algorithm."""
def __init__(
self,
scores: Optional[np.ndarray] = None,
embedding_size: int = 100,
dtype: Optional[str] = "u8",
maximum_depth: Optional[int] = None,
path: Optional[str] = None,
verbose: bool = False,
ring_bell: bool = False,
enable_cache: bool = False
):
"""Create new Score-based SPINE method.
Parameters
--------------------------
scores: Optional[np.ndarray] = None
Numpy array to be used to sort the anchor nodes.
embedding_size: int = 100
Dimension of the embedding.
dtype: Optional[str] = "u8"
Dtype to use for the embedding.
maximum_depth: Optional[int] = None
Maximum depth of the shortest path.
path: Optional[str] = None
Path where to store the mmap-ed embedding.
This parameter is necessary to embed very large graphs.
verbose: bool = False
Whether to show loading bars.
ring_bell: bool = False,
Whether to play a sound when embedding completes.
enable_cache: bool = False
Whether to enable the cache, that is to
store the computed embedding.
"""
self._dtype = dtype
self._verbose = verbose
self._maximum_depth = maximum_depth
self._path = path
self._scores = scores
self._model = models.ScoreSPINE(
embedding_size=embedding_size,
verbose=self._verbose,
maximum_depth=self._maximum_depth,
path=self._path
)
super().__init__(
embedding_size=embedding_size,
ring_bell=ring_bell,
enable_cache=enable_cache
)
def parameters(self) -> Dict[str, Any]:
"""Returns parameters of the model."""
return dict(
**super().parameters(),
**dict(
dtype=self._dtype,
maximum_depth=self._maximum_depth,
path=self._path,
)
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
embedding_size=5,
)
def _fit_transform(
self,
graph: Graph,
return_dataframe: bool = True,
) -> EmbeddingResult:
"""Return node embedding."""
node_embedding = self._model.fit_transform(
scores=(np.ones(graph.get_number_of_nodes())
if self._scores is None else self._scores).astype(np.float32),
graph=graph,
dtype=self._dtype,
)
if return_dataframe:
node_embedding = pd.DataFrame(
node_embedding,
index=graph.get_node_names()
)
return EmbeddingResult(
embedding_method_name=self.model_name(),
node_embeddings=node_embedding
)
@classmethod
def model_name(cls) -> str:
"""Returns name of the model."""
return "Score-based SPINE"
@classmethod
def can_use_node_types(cls) -> bool:
"""Returns whether the model can optionally use node types."""
return False
@classmethod
def can_use_edge_weights(cls) -> bool:
"""Returns whether the model can optionally use edge weights."""
return False
@classmethod
def can_use_edge_types(cls) -> bool:
"""Returns whether the model can optionally use edge types."""
return False
@classmethod
def is_stocastic(cls) -> bool:
"""Returns whether the model is stocastic and has therefore a random state."""
return False