embiggen/embedders/ensmallen_embedders/transe.py
"""Module providing TransE implementation."""
from typing import Optional
from ensmallen import Graph
import pandas as pd
from embiggen.embedders.ensmallen_embedders.siamese_model import SiameseEnsmallen
from embiggen.utils import EmbeddingResult
class TransEEnsmallen(SiameseEnsmallen):
"""Class implementing the TransE algorithm."""
def __init__(
self,
embedding_size: int = 100,
relu_bias: float = 1.0,
epochs: int = 100,
learning_rate: float = 0.05,
learning_rate_decay: float = 0.9,
node_embedding_path: Optional[str] = None,
edge_type_embedding_path: Optional[str] = None,
dtype: str = "f32",
random_state: int = 42,
verbose: bool = False,
ring_bell: bool = False,
enable_cache: bool = False
):
"""Create new TransE method.
Parameters
--------------------------
model_name: str
The model to instantiate.
embedding_size: int = 100
Dimension of the embedding.
relu_bias: float = 1.0
Bias to use for the relu.
In the TransE paper it is called gamma.
epochs: int = 100
The number of epochs to run the model for, by default 10.
learning_rate: float = 0.05
The learning rate to update the gradient, by default 0.01.
learning_rate_decay: float = 0.9
Factor to reduce the learning rate for at each epoch. By default 0.9.
node_embedding_path: Optional[str] = None
Path where to mmap and store the nodes embedding.
This is necessary to embed large graphs whose embedding will not
fit into the available main memory.
edge_type_embedding_path: Optional[str] = None
Path where to mmap and store the edge type embedding.
This is necessary to embed large graphs whose embedding will not
fit into the available main memory.
dtype: str = "f32"
The data type to be employed, by default f32.
random_state: int = 42
Random state to reproduce the embeddings.
verbose: bool = False
Whether to show loading bars.
ring_bell: bool = False,
Whether to play a sound when embedding completes.
enable_cache: bool = False
Whether to enable the cache, that is to
store the computed embedding.
"""
super().__init__(
embedding_size=embedding_size,
relu_bias=relu_bias,
epochs=epochs,
learning_rate=learning_rate,
learning_rate_decay=learning_rate_decay,
node_embedding_path=node_embedding_path,
edge_type_embedding_path=edge_type_embedding_path,
dtype=dtype,
random_state=random_state,
verbose=verbose,
ring_bell=ring_bell,
enable_cache=enable_cache,
)
def _fit_transform(
self,
graph: Graph,
return_dataframe: bool = True,
) -> EmbeddingResult:
"""Return node embedding."""
node_embedding, edge_type_embedding = self._model.fit_transform(
graph,
)
if return_dataframe:
node_embedding = pd.DataFrame(
node_embedding,
index=graph.get_node_names()
)
edge_type_embedding = pd.DataFrame(
edge_type_embedding,
index=graph.get_unique_edge_type_names()
)
return EmbeddingResult(
embedding_method_name=self.model_name(),
node_embeddings=node_embedding,
edge_type_embeddings=edge_type_embedding,
)
@classmethod
def model_name(cls) -> str:
"""Returns name of the model."""
return "TransE"
@classmethod
def requires_edge_types(cls) -> bool:
return True