embiggen/embedders/ensmallen_embedders/weighted_spine.py
"""Module providing abstract Node2Vec implementation."""
from typing import Dict, Any
from ensmallen import Graph
import pandas as pd
from ensmallen import models
from embiggen.embedders.ensmallen_embedders.ensmallen_embedder import EnsmallenEmbedder
from embiggen.utils import EmbeddingResult
class WeightedSPINE(EnsmallenEmbedder):
"""Abstract class for Node2Vec algorithms."""
def __init__(
self,
embedding_size: int = 100,
use_edge_weights_as_probabilities: bool = False,
verbose: bool = False,
ring_bell: bool = False,
enable_cache: bool = False
):
"""Create new abstract Node2Vec method.
Parameters
--------------------------
embedding_size: int = 100
Dimension of the embedding.
use_edge_weights_as_probabilities: bool = False
Whether to treat the weights as probabilities.
verbose: bool = False
Whether to show loading bars.
ring_bell: bool = False,
Whether to play a sound when embedding completes.
enable_cache: bool = False
Whether to enable the cache, that is to
store the computed embedding.
"""
self._verbose = verbose
self._model = models.WeightedSPINE(
embedding_size=embedding_size,
use_edge_weights_as_probabilities=use_edge_weights_as_probabilities,
)
super().__init__(
embedding_size=embedding_size,
ring_bell=ring_bell,
enable_cache=enable_cache
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
embedding_size=5,
)
def _fit_transform(
self,
graph: Graph,
return_dataframe: bool = True,
) -> EmbeddingResult:
"""Return node embedding."""
node_embedding = self._model.fit_transform(
graph,
verbose=self._verbose,
).T
if return_dataframe:
node_embedding = pd.DataFrame(
node_embedding,
index=graph.get_node_names()
)
return EmbeddingResult(
embedding_method_name=self.model_name(),
node_embeddings=node_embedding
)
@classmethod
def model_name(cls) -> str:
"""Returns name of the model."""
return "WeightedSPINE"
@classmethod
def requires_edge_weights(cls) -> bool:
return True
@classmethod
def requires_positive_edge_weights(cls) -> bool:
return True
@classmethod
def can_use_node_types(cls) -> bool:
"""Returns whether the model can optionally use node types."""
return False
@classmethod
def can_use_edge_types(cls) -> bool:
"""Returns whether the model can optionally use edge types."""
return False
@classmethod
def is_stocastic(cls) -> bool:
"""Returns whether the model is stocastic and has therefore a random state."""
return False