embiggen/embedders/karateclub_embedders/abstract_karateclub_embedder.py
"""Submodule providing wrapper for the Karate Club models."""
from typing import Optional, Type, Dict, Any
from ensmallen import Graph
import numpy as np
import pandas as pd
from karateclub.estimator import Estimator
from embiggen.utils.abstract_models import AbstractEmbeddingModel, EmbeddingResult, abstract_class
from embiggen.utils.networkx_utils import convert_ensmallen_graph_to_networkx_graph
@abstract_class
class AbstractKarateClubEmbedder(AbstractEmbeddingModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._model: Optional[Type[Estimator]] = None
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
embedding_size=2,
)
@classmethod
def library_name(cls) -> str:
return "Karate Club"
@classmethod
def task_name(cls) -> str:
return "Node Embedding"
def _build_model(self) -> Type[Estimator]:
"""Returnd the built estimator."""
raise NotImplementedError(
f"In the child class {self.__class__.__name__} of {super().__class__.__name__} "
f"implementing the model {self.model_name()} we could not find the method "
"called `_build_model`. Please do implement it."
)
def _fit_transform(
self,
graph: Graph,
return_dataframe: bool = True,
verbose: bool = True
) -> EmbeddingResult:
"""Return node embedding.
Parameters
---------------
graph: Graph
The graph to embed.
return_dataframe: bool = True
Whether to return a DataFrame.
verbose: bool = True
Whether to show a loading bar.
"""
self._model = self._build_model()
if not issubclass(self._model.__class__, Estimator):
raise NotImplementedError(
"The model created with the `_build_model` in the child "
f"class {self.__class__.__name__} for the model {self.model_name()} "
f"in the library {self.library_name()} did not return a "
f"Estimator but an object of type {type(self._model)}. "
"It is not clear what to do with this object."
)
graph_nx = convert_ensmallen_graph_to_networkx_graph(
graph,
numeric_node_ids=True
)
self._model.fit(graph_nx)
node_embeddings: np.ndarray = self._model.get_embedding()
if not issubclass(node_embeddings.__class__, np.ndarray):
raise NotImplementedError(
"The model created with the `get_embedding` in the child "
f"class {self.__class__.__name__} for the model {self.model_name()} "
f"in the library {self.library_name()} did not return a "
f"Numpy Array but an object of type {type(self._model)}. "
"It is not clear what to do with this object."
)
if return_dataframe:
node_embeddings: pd.DataFrame = pd.DataFrame(
node_embeddings,
index=graph.get_node_names()
)
return EmbeddingResult(
embedding_method_name=self.model_name(),
node_embeddings=node_embeddings
)
@classmethod
def is_stocastic(cls) -> bool:
"""Returns whether the model is stocastic and has therefore a random state."""
return True