embiggen/embedders/karateclub_embedders/boostne.py
"""Wrapper for BoostNE model provided from the Karate Club package."""
from typing import Dict, Any
from karateclub.node_embedding import BoostNE
from embiggen.embedders.karateclub_embedders.abstract_karateclub_embedder import AbstractKarateClubEmbedder
class BoostNEKarateClub(AbstractKarateClubEmbedder):
def __init__(
self,
embedding_size: int = 100,
iterations: int = 16,
order: int = 2,
alpha: float = 0.01,
random_state: int = 42,
ring_bell: bool = False,
enable_cache: bool = False
):
"""Return a new BoostNE embedding model.
Parameters
----------------------
embedding_size: int = 100
Size of the embedding to use.
iterations: int = 16
Number of boosting iterations. Default is 16.
order: int = 2
Number of adjacency matrix powers. Default is 2.
alpha: float = 0.01
NMF regularization parameter. Default is 0.01.
random_state: int = 42
Random state to use for the stocastic
portions of the embedding algorithm.
ring_bell: bool = False,
Whether to play a sound when embedding completes.
enable_cache: bool = False
Whether to enable the cache, that is to
store the computed embedding.
"""
self._iterations = iterations
self._order = order
self._alpha = alpha
super().__init__(
embedding_size=embedding_size,
enable_cache=enable_cache,
ring_bell=ring_bell,
random_state=random_state
)
def parameters(self) -> Dict[str, Any]:
"""Returns the parameters used in the model."""
return dict(
**super().parameters(),
iterations=self._iterations,
order=self._order,
alpha=self._alpha
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
**AbstractKarateClubEmbedder.smoke_test_parameters(),
iterations=1,
order=2
)
def _build_model(self) -> BoostNE:
"""Return new instance of the BoostNE model."""
return BoostNE(
dimensions=self._embedding_size,
iterations=self._iterations,
order=self._order,
alpha=self._alpha,
seed=self._random_state
)
@classmethod
def model_name(cls) -> str:
"""Returns name of the model"""
return "BoostNE"
@classmethod
def requires_nodes_sorted_by_decreasing_node_degree(cls) -> bool:
return False
@classmethod
def is_topological(cls) -> bool:
return True
@classmethod
def can_use_edge_weights(cls) -> bool:
"""Returns whether the model can optionally use edge weights."""
return False
@classmethod
def can_use_node_types(cls) -> bool:
"""Returns whether the model can optionally use node types."""
return False
@classmethod
def can_use_edge_types(cls) -> bool:
"""Returns whether the model can optionally use edge types."""
return False