embiggen/embedders/karateclub_embedders/netmf.py
"""Wrapper for NetMF model provided from the Karate Club package."""
from typing import Dict, Any
from karateclub.node_embedding import NetMF
from embiggen.embedders.karateclub_embedders.abstract_karateclub_embedder import AbstractKarateClubEmbedder
class NetMFKarateClub(AbstractKarateClubEmbedder):
def __init__(
self,
embedding_size: int = 100,
iteration: int = 10,
order: int = 2,
negative_samples: int = 1,
random_state: int = 42,
ring_bell: bool = False,
enable_cache: bool = False
):
"""Return a new NetMF embedding model.
Parameters
----------------------
embedding_size: int = 100
Size of the embedding to use.
iteration: int = 10
Number of SVD iterations. Default is 10.
order: int = 2
Number of PMI matrix powers. Default is 5.
negative_samples: int = 1
Number of negative samples. Default is 1.
random_state: int = 42
Random state to use for the stocastic
portions of the embedding algorithm.
ring_bell: bool = False,
Whether to play a sound when embedding completes.
enable_cache: bool = False
Whether to enable the cache, that is to
store the computed embedding.
"""
self._iteration = iteration
self._order = order
self._negative_samples = negative_samples
super().__init__(
embedding_size=embedding_size,
enable_cache=enable_cache,
ring_bell=ring_bell,
random_state=random_state
)
def parameters(self) -> Dict[str, Any]:
"""Returns the parameters used in the model."""
return dict(
**super().parameters(),
iteration=self._iteration,
negative_samples=self._negative_samples,
order=self._order
)
@classmethod
def smoke_test_parameters(cls) -> Dict[str, Any]:
"""Returns parameters for smoke test."""
return dict(
**AbstractKarateClubEmbedder.smoke_test_parameters(),
iteration=1,
order=2
)
def _build_model(self) -> NetMF:
"""Return new instance of the NetMF model."""
return NetMF(
dimensions=self._embedding_size,
iteration=self._iteration,
order=self._order,
negative_samples=self._negative_samples,
seed=self._random_state
)
@classmethod
def model_name(cls) -> str:
"""Returns name of the model"""
return "NetMF"
@classmethod
def requires_nodes_sorted_by_decreasing_node_degree(cls) -> bool:
return False
@classmethod
def is_topological(cls) -> bool:
return True
@classmethod
def can_use_edge_weights(cls) -> bool:
"""Returns whether the model can optionally use edge weights."""
return False
@classmethod
def can_use_node_types(cls) -> bool:
"""Returns whether the model can optionally use node types."""
return False
@classmethod
def can_use_edge_types(cls) -> bool:
"""Returns whether the model can optionally use edge types."""
return False