netdata/netdata

View on GitHub
src/libnetdata/xxhash.h

Summary

Maintainability
Test Coverage
/*
 * xxHash - Extremely Fast Hash algorithm
 * Header File
 * Copyright (C) 2012-2023 Yann Collet
 *
 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above
 *      copyright notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other materials provided with the
 *      distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * You can contact the author at:
 *   - xxHash homepage: https://www.xxhash.com
 *   - xxHash source repository: https://github.com/Cyan4973/xxHash
 */

/*!
 * @mainpage xxHash
 *
 * xxHash is an extremely fast non-cryptographic hash algorithm, working at RAM speed
 * limits.
 *
 * It is proposed in four flavors, in three families:
 * 1. @ref XXH32_family
 *   - Classic 32-bit hash function. Simple, compact, and runs on almost all
 *     32-bit and 64-bit systems.
 * 2. @ref XXH64_family
 *   - Classic 64-bit adaptation of XXH32. Just as simple, and runs well on most
 *     64-bit systems (but _not_ 32-bit systems).
 * 3. @ref XXH3_family
 *   - Modern 64-bit and 128-bit hash function family which features improved
 *     strength and performance across the board, especially on smaller data.
 *     It benefits greatly from SIMD and 64-bit without requiring it.
 *
 * Benchmarks
 * ---
 * The reference system uses an Intel i7-9700K CPU, and runs Ubuntu x64 20.04.
 * The open source benchmark program is compiled with clang v10.0 using -O3 flag.
 *
 * | Hash Name            | ISA ext | Width | Large Data Speed | Small Data Velocity |
 * | -------------------- | ------- | ----: | ---------------: | ------------------: |
 * | XXH3_64bits()        | @b AVX2 |    64 |        59.4 GB/s |               133.1 |
 * | MeowHash             | AES-NI  |   128 |        58.2 GB/s |                52.5 |
 * | XXH3_128bits()       | @b AVX2 |   128 |        57.9 GB/s |               118.1 |
 * | CLHash               | PCLMUL  |    64 |        37.1 GB/s |                58.1 |
 * | XXH3_64bits()        | @b SSE2 |    64 |        31.5 GB/s |               133.1 |
 * | XXH3_128bits()       | @b SSE2 |   128 |        29.6 GB/s |               118.1 |
 * | RAM sequential read  |         |   N/A |        28.0 GB/s |                 N/A |
 * | ahash                | AES-NI  |    64 |        22.5 GB/s |               107.2 |
 * | City64               |         |    64 |        22.0 GB/s |                76.6 |
 * | T1ha2                |         |    64 |        22.0 GB/s |                99.0 |
 * | City128              |         |   128 |        21.7 GB/s |                57.7 |
 * | FarmHash             | AES-NI  |    64 |        21.3 GB/s |                71.9 |
 * | XXH64()              |         |    64 |        19.4 GB/s |                71.0 |
 * | SpookyHash           |         |    64 |        19.3 GB/s |                53.2 |
 * | Mum                  |         |    64 |        18.0 GB/s |                67.0 |
 * | CRC32C               | SSE4.2  |    32 |        13.0 GB/s |                57.9 |
 * | XXH32()              |         |    32 |         9.7 GB/s |                71.9 |
 * | City32               |         |    32 |         9.1 GB/s |                66.0 |
 * | Blake3*              | @b AVX2 |   256 |         4.4 GB/s |                 8.1 |
 * | Murmur3              |         |    32 |         3.9 GB/s |                56.1 |
 * | SipHash*             |         |    64 |         3.0 GB/s |                43.2 |
 * | Blake3*              | @b SSE2 |   256 |         2.4 GB/s |                 8.1 |
 * | HighwayHash          |         |    64 |         1.4 GB/s |                 6.0 |
 * | FNV64                |         |    64 |         1.2 GB/s |                62.7 |
 * | Blake2*              |         |   256 |         1.1 GB/s |                 5.1 |
 * | SHA1*                |         |   160 |         0.8 GB/s |                 5.6 |
 * | MD5*                 |         |   128 |         0.6 GB/s |                 7.8 |
 * @note
 *   - Hashes which require a specific ISA extension are noted. SSE2 is also noted,
 *     even though it is mandatory on x64.
 *   - Hashes with an asterisk are cryptographic. Note that MD5 is non-cryptographic
 *     by modern standards.
 *   - Small data velocity is a rough average of algorithm's efficiency for small
 *     data. For more accurate information, see the wiki.
 *   - More benchmarks and strength tests are found on the wiki:
 *         https://github.com/Cyan4973/xxHash/wiki
 *
 * Usage
 * ------
 * All xxHash variants use a similar API. Changing the algorithm is a trivial
 * substitution.
 *
 * @pre
 *    For functions which take an input and length parameter, the following
 *    requirements are assumed:
 *    - The range from [`input`, `input + length`) is valid, readable memory.
 *      - The only exception is if the `length` is `0`, `input` may be `NULL`.
 *    - For C++, the objects must have the *TriviallyCopyable* property, as the
 *      functions access bytes directly as if it was an array of `unsigned char`.
 *
 * @anchor single_shot_example
 * **Single Shot**
 *
 * These functions are stateless functions which hash a contiguous block of memory,
 * immediately returning the result. They are the easiest and usually the fastest
 * option.
 *
 * XXH32(), XXH64(), XXH3_64bits(), XXH3_128bits()
 *
 * @code{.c}
 *   #include <string.h>
 *   #include "xxhash.h"
 *
 *   // Example for a function which hashes a null terminated string with XXH32().
 *   XXH32_hash_t hash_string(const char* string, XXH32_hash_t seed)
 *   {
 *       // NULL pointers are only valid if the length is zero
 *       size_t length = (string == NULL) ? 0 : strlen(string);
 *       return XXH32(string, length, seed);
 *   }
 * @endcode
 *
 * @anchor streaming_example
 * **Streaming**
 *
 * These groups of functions allow incremental hashing of unknown size, even
 * more than what would fit in a size_t.
 *
 * XXH32_reset(), XXH64_reset(), XXH3_64bits_reset(), XXH3_128bits_reset()
 *
 * @code{.c}
 *   #include <stdio.h>
 *   #include <assert.h>
 *   #include "xxhash.h"
 *   // Example for a function which hashes a FILE incrementally with XXH3_64bits().
 *   XXH64_hash_t hashFile(FILE* f)
 *   {
 *       // Allocate a state struct. Do not just use malloc() or new.
 *       XXH3_state_t* state = XXH3_createState();
 *       assert(state != NULL && "Out of memory!");
 *       // Reset the state to start a new hashing session.
 *       XXH3_64bits_reset(state);
 *       char buffer[4096];
 *       size_t count;
 *       // Read the file in chunks
 *       while ((count = fread(buffer, 1, sizeof(buffer), f)) != 0) {
 *           // Run update() as many times as necessary to process the data
 *           XXH3_64bits_update(state, buffer, count);
 *       }
 *       // Retrieve the finalized hash. This will not change the state.
 *       XXH64_hash_t result = XXH3_64bits_digest(state);
 *       // Free the state. Do not use free().
 *       XXH3_freeState(state);
 *       return result;
 *   }
 * @endcode
 *
 * @file xxhash.h
 * xxHash prototypes and implementation
 */

#if defined (__cplusplus)
extern "C" {
#endif

/* ****************************
 *  INLINE mode
 ******************************/
/*!
 * @defgroup public Public API
 * Contains details on the public xxHash functions.
 * @{
 */
#ifdef XXH_DOXYGEN
/*!
 * @brief Gives access to internal state declaration, required for static allocation.
 *
 * Incompatible with dynamic linking, due to risks of ABI changes.
 *
 * Usage:
 * @code{.c}
 *     #define XXH_STATIC_LINKING_ONLY
 *     #include "xxhash.h"
 * @endcode
 */
#  define XXH_STATIC_LINKING_ONLY
/* Do not undef XXH_STATIC_LINKING_ONLY for Doxygen */

/*!
 * @brief Gives access to internal definitions.
 *
 * Usage:
 * @code{.c}
 *     #define XXH_STATIC_LINKING_ONLY
 *     #define XXH_IMPLEMENTATION
 *     #include "xxhash.h"
 * @endcode
 */
#  define XXH_IMPLEMENTATION
/* Do not undef XXH_IMPLEMENTATION for Doxygen */

/*!
 * @brief Exposes the implementation and marks all functions as `inline`.
 *
 * Use these build macros to inline xxhash into the target unit.
 * Inlining improves performance on small inputs, especially when the length is
 * expressed as a compile-time constant:
 *
 *  https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
 *
 * It also keeps xxHash symbols private to the unit, so they are not exported.
 *
 * Usage:
 * @code{.c}
 *     #define XXH_INLINE_ALL
 *     #include "xxhash.h"
 * @endcode
 * Do not compile and link xxhash.o as a separate object, as it is not useful.
 */
#  define XXH_INLINE_ALL
#  undef XXH_INLINE_ALL
/*!
 * @brief Exposes the implementation without marking functions as inline.
 */
#  define XXH_PRIVATE_API
#  undef XXH_PRIVATE_API
/*!
 * @brief Emulate a namespace by transparently prefixing all symbols.
 *
 * If you want to include _and expose_ xxHash functions from within your own
 * library, but also want to avoid symbol collisions with other libraries which
 * may also include xxHash, you can use @ref XXH_NAMESPACE to automatically prefix
 * any public symbol from xxhash library with the value of @ref XXH_NAMESPACE
 * (therefore, avoid empty or numeric values).
 *
 * Note that no change is required within the calling program as long as it
 * includes `xxhash.h`: Regular symbol names will be automatically translated
 * by this header.
 */
#  define XXH_NAMESPACE /* YOUR NAME HERE */
#  undef XXH_NAMESPACE
#endif

#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
    && !defined(XXH_INLINE_ALL_31684351384)
   /* this section should be traversed only once */
#  define XXH_INLINE_ALL_31684351384
   /* give access to the advanced API, required to compile implementations */
#  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
#  define XXH_STATIC_LINKING_ONLY
   /* make all functions private */
#  undef XXH_PUBLIC_API
#  if defined(__GNUC__)
#    define XXH_PUBLIC_API static __inline __attribute__((unused))
#  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
#    define XXH_PUBLIC_API static inline
#  elif defined(_MSC_VER)
#    define XXH_PUBLIC_API static __inline
#  else
     /* note: this version may generate warnings for unused static functions */
#    define XXH_PUBLIC_API static
#  endif

   /*
    * This part deals with the special case where a unit wants to inline xxHash,
    * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
    * such as part of some previously included *.h header file.
    * Without further action, the new include would just be ignored,
    * and functions would effectively _not_ be inlined (silent failure).
    * The following macros solve this situation by prefixing all inlined names,
    * avoiding naming collision with previous inclusions.
    */
   /* Before that, we unconditionally #undef all symbols,
    * in case they were already defined with XXH_NAMESPACE.
    * They will then be redefined for XXH_INLINE_ALL
    */
#  undef XXH_versionNumber
    /* XXH32 */
#  undef XXH32
#  undef XXH32_createState
#  undef XXH32_freeState
#  undef XXH32_reset
#  undef XXH32_update
#  undef XXH32_digest
#  undef XXH32_copyState
#  undef XXH32_canonicalFromHash
#  undef XXH32_hashFromCanonical
    /* XXH64 */
#  undef XXH64
#  undef XXH64_createState
#  undef XXH64_freeState
#  undef XXH64_reset
#  undef XXH64_update
#  undef XXH64_digest
#  undef XXH64_copyState
#  undef XXH64_canonicalFromHash
#  undef XXH64_hashFromCanonical
    /* XXH3_64bits */
#  undef XXH3_64bits
#  undef XXH3_64bits_withSecret
#  undef XXH3_64bits_withSeed
#  undef XXH3_64bits_withSecretandSeed
#  undef XXH3_createState
#  undef XXH3_freeState
#  undef XXH3_copyState
#  undef XXH3_64bits_reset
#  undef XXH3_64bits_reset_withSeed
#  undef XXH3_64bits_reset_withSecret
#  undef XXH3_64bits_update
#  undef XXH3_64bits_digest
#  undef XXH3_generateSecret
    /* XXH3_128bits */
#  undef XXH128
#  undef XXH3_128bits
#  undef XXH3_128bits_withSeed
#  undef XXH3_128bits_withSecret
#  undef XXH3_128bits_reset
#  undef XXH3_128bits_reset_withSeed
#  undef XXH3_128bits_reset_withSecret
#  undef XXH3_128bits_reset_withSecretandSeed
#  undef XXH3_128bits_update
#  undef XXH3_128bits_digest
#  undef XXH128_isEqual
#  undef XXH128_cmp
#  undef XXH128_canonicalFromHash
#  undef XXH128_hashFromCanonical
    /* Finally, free the namespace itself */
#  undef XXH_NAMESPACE

    /* employ the namespace for XXH_INLINE_ALL */
#  define XXH_NAMESPACE XXH_INLINE_
   /*
    * Some identifiers (enums, type names) are not symbols,
    * but they must nonetheless be renamed to avoid redeclaration.
    * Alternative solution: do not redeclare them.
    * However, this requires some #ifdefs, and has a more dispersed impact.
    * Meanwhile, renaming can be achieved in a single place.
    */
#  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
#  define XXH_OK XXH_IPREF(XXH_OK)
#  define XXH_ERROR XXH_IPREF(XXH_ERROR)
#  define XXH_errorcode XXH_IPREF(XXH_errorcode)
#  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
#  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
#  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
#  define XXH32_state_s XXH_IPREF(XXH32_state_s)
#  define XXH32_state_t XXH_IPREF(XXH32_state_t)
#  define XXH64_state_s XXH_IPREF(XXH64_state_s)
#  define XXH64_state_t XXH_IPREF(XXH64_state_t)
#  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
#  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
#  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
   /* Ensure the header is parsed again, even if it was previously included */
#  undef XXHASH_H_5627135585666179
#  undef XXHASH_H_STATIC_13879238742
#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */

/* ****************************************************************
 *  Stable API
 *****************************************************************/
#ifndef XXHASH_H_5627135585666179
#define XXHASH_H_5627135585666179 1

/*! @brief Marks a global symbol. */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
#  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
#    ifdef XXH_EXPORT
#      define XXH_PUBLIC_API __declspec(dllexport)
#    elif XXH_IMPORT
#      define XXH_PUBLIC_API __declspec(dllimport)
#    endif
#  else
#    define XXH_PUBLIC_API   /* do nothing */
#  endif
#endif

#ifdef XXH_NAMESPACE
#  define XXH_CAT(A,B) A##B
#  define XXH_NAME2(A,B) XXH_CAT(A,B)
#  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
/* XXH32 */
#  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
#  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
#  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
#  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
#  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
#  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
#  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
#  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
#  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
/* XXH64 */
#  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
#  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
#  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
#  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
#  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
#  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
#  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
#  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
#  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
/* XXH3_64bits */
#  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
#  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
#  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
#  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
#  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
#  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
#  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
#  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
#  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
#  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
#  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
#  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
#  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
#  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
#  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
/* XXH3_128bits */
#  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
#  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
#  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
#  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
#  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
#  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
#  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
#  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
#  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
#  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
#  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
#  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
#  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
#  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
#  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
#endif


/* *************************************
*  Compiler specifics
***************************************/

/* specific declaration modes for Windows */
#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
#  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
#    ifdef XXH_EXPORT
#      define XXH_PUBLIC_API __declspec(dllexport)
#    elif XXH_IMPORT
#      define XXH_PUBLIC_API __declspec(dllimport)
#    endif
#  else
#    define XXH_PUBLIC_API   /* do nothing */
#  endif
#endif

#if defined (__GNUC__)
# define XXH_CONSTF  __attribute__((const))
# define XXH_PUREF   __attribute__((pure))
# define XXH_MALLOCF __attribute__((malloc))
#else
# define XXH_CONSTF  /* disable */
# define XXH_PUREF
# define XXH_MALLOCF
#endif

/* *************************************
*  Version
***************************************/
#define XXH_VERSION_MAJOR    0
#define XXH_VERSION_MINOR    8
#define XXH_VERSION_RELEASE  2
/*! @brief Version number, encoded as two digits each */
#define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)

/*!
 * @brief Obtains the xxHash version.
 *
 * This is mostly useful when xxHash is compiled as a shared library,
 * since the returned value comes from the library, as opposed to header file.
 *
 * @return @ref XXH_VERSION_NUMBER of the invoked library.
 */
XXH_PUBLIC_API XXH_CONSTF unsigned XXH_versionNumber (void);


/* ****************************
*  Common basic types
******************************/
#include <stddef.h>   /* size_t */
/*!
 * @brief Exit code for the streaming API.
 */
typedef enum {
    XXH_OK = 0, /*!< OK */
    XXH_ERROR   /*!< Error */
} XXH_errorcode;


/*-**********************************************************************
*  32-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
/*!
 * @brief An unsigned 32-bit integer.
 *
 * Not necessarily defined to `uint32_t` but functionally equivalent.
 */
typedef uint32_t XXH32_hash_t;

#elif !defined (__VMS) \
  && (defined (__cplusplus) \
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
#   include <stdint.h>
    typedef uint32_t XXH32_hash_t;

#else
#   include <limits.h>
#   if UINT_MAX == 0xFFFFFFFFUL
      typedef unsigned int XXH32_hash_t;
#   elif ULONG_MAX == 0xFFFFFFFFUL
      typedef unsigned long XXH32_hash_t;
#   else
#     error "unsupported platform: need a 32-bit type"
#   endif
#endif

/*!
 * @}
 *
 * @defgroup XXH32_family XXH32 family
 * @ingroup public
 * Contains functions used in the classic 32-bit xxHash algorithm.
 *
 * @note
 *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
 *   Note that the @ref XXH3_family provides competitive speed for both 32-bit
 *   and 64-bit systems, and offers true 64/128 bit hash results.
 *
 * @see @ref XXH64_family, @ref XXH3_family : Other xxHash families
 * @see @ref XXH32_impl for implementation details
 * @{
 */

/*!
 * @brief Calculates the 32-bit hash of @p input using xxHash32.
 *
 * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
 *
 * See @ref single_shot_example "Single Shot Example" for an example.
 *
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 * @param seed The 32-bit seed to alter the hash's output predictably.
 *
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return The calculated 32-bit hash value.
 *
 * @see
 *    XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
 *    Direct equivalents for the other variants of xxHash.
 * @see
 *    XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
 */
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);

#ifndef XXH_NO_STREAM
/*!
 * Streaming functions generate the xxHash value from an incremental input.
 * This method is slower than single-call functions, due to state management.
 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
 *
 * An XXH state must first be allocated using `XXH*_createState()`.
 *
 * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
 *
 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
 *
 * The function returns an error code, with 0 meaning OK, and any other value
 * meaning there is an error.
 *
 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
 * This function returns the nn-bits hash as an int or long long.
 *
 * It's still possible to continue inserting input into the hash state after a
 * digest, and generate new hash values later on by invoking `XXH*_digest()`.
 *
 * When done, release the state using `XXH*_freeState()`.
 *
 * @see streaming_example at the top of @ref xxhash.h for an example.
 */

/*!
 * @typedef struct XXH32_state_s XXH32_state_t
 * @brief The opaque state struct for the XXH32 streaming API.
 *
 * @see XXH32_state_s for details.
 */
typedef struct XXH32_state_s XXH32_state_t;

/*!
 * @brief Allocates an @ref XXH32_state_t.
 *
 * Must be freed with XXH32_freeState().
 * @return An allocated XXH32_state_t on success, `NULL` on failure.
 */
XXH_PUBLIC_API XXH_MALLOCF XXH32_state_t* XXH32_createState(void);
/*!
 * @brief Frees an @ref XXH32_state_t.
 *
 * Must be allocated with XXH32_createState().
 * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
 * @return XXH_OK.
 */
XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
/*!
 * @brief Copies one @ref XXH32_state_t to another.
 *
 * @param dst_state The state to copy to.
 * @param src_state The state to copy from.
 * @pre
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
 */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);

/*!
 * @brief Resets an @ref XXH32_state_t to begin a new hash.
 *
 * This function resets and seeds a state. Call it before @ref XXH32_update().
 *
 * @param statePtr The state struct to reset.
 * @param seed The 32-bit seed to alter the hash result predictably.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);

/*!
 * @brief Consumes a block of @p input to an @ref XXH32_state_t.
 *
 * Call this to incrementally consume blocks of data.
 *
 * @param statePtr The state struct to update.
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);

/*!
 * @brief Returns the calculated hash value from an @ref XXH32_state_t.
 *
 * @note
 *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
 *   digest, and update again.
 *
 * @param statePtr The state struct to calculate the hash from.
 *
 * @pre
 *  @p statePtr must not be `NULL`.
 *
 * @return The calculated xxHash32 value from that state.
 */
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
#endif /* !XXH_NO_STREAM */

/*******   Canonical representation   *******/

/*
 * The default return values from XXH functions are unsigned 32 and 64 bit
 * integers.
 * This the simplest and fastest format for further post-processing.
 *
 * However, this leaves open the question of what is the order on the byte level,
 * since little and big endian conventions will store the same number differently.
 *
 * The canonical representation settles this issue by mandating big-endian
 * convention, the same convention as human-readable numbers (large digits first).
 *
 * When writing hash values to storage, sending them over a network, or printing
 * them, it's highly recommended to use the canonical representation to ensure
 * portability across a wider range of systems, present and future.
 *
 * The following functions allow transformation of hash values to and from
 * canonical format.
 */

/*!
 * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
 */
typedef struct {
    unsigned char digest[4]; /*!< Hash bytes, big endian */
} XXH32_canonical_t;

/*!
 * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
 *
 * @param dst The @ref XXH32_canonical_t pointer to be stored to.
 * @param hash The @ref XXH32_hash_t to be converted.
 *
 * @pre
 *   @p dst must not be `NULL`.
 */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);

/*!
 * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
 *
 * @param src The @ref XXH32_canonical_t to convert.
 *
 * @pre
 *   @p src must not be `NULL`.
 *
 * @return The converted hash.
 */
XXH_PUBLIC_API XXH_PUREF XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);


/*! @cond Doxygen ignores this part */
#ifdef __has_attribute
# define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
# define XXH_HAS_ATTRIBUTE(x) 0
#endif
/*! @endcond */

/*! @cond Doxygen ignores this part */
/*
 * C23 __STDC_VERSION__ number hasn't been specified yet. For now
 * leave as `201711L` (C17 + 1).
 * TODO: Update to correct value when its been specified.
 */
#define XXH_C23_VN 201711L
/*! @endcond */

/*! @cond Doxygen ignores this part */
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN) && defined(__has_c_attribute)
# define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define XXH_HAS_C_ATTRIBUTE(x) 0
#endif
/*! @endcond */

/*! @cond Doxygen ignores this part */
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define XXH_HAS_CPP_ATTRIBUTE(x) 0
#endif
/*! @endcond */

/*! @cond Doxygen ignores this part */
/*
 * Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
 * introduced in CPP17 and C23.
 * CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
 * C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
 */
#if XXH_HAS_C_ATTRIBUTE(fallthrough) || XXH_HAS_CPP_ATTRIBUTE(fallthrough)
# define XXH_FALLTHROUGH [[fallthrough]]
#elif XXH_HAS_ATTRIBUTE(__fallthrough__)
# define XXH_FALLTHROUGH __attribute__ ((__fallthrough__))
#else
# define XXH_FALLTHROUGH /* fallthrough */
#endif
/*! @endcond */

/*! @cond Doxygen ignores this part */
/*
 * Define XXH_NOESCAPE for annotated pointers in public API.
 * https://clang.llvm.org/docs/AttributeReference.html#noescape
 * As of writing this, only supported by clang.
 */
#if XXH_HAS_ATTRIBUTE(noescape)
# define XXH_NOESCAPE __attribute__((noescape))
#else
# define XXH_NOESCAPE
#endif
/*! @endcond */


/*!
 * @}
 * @ingroup public
 * @{
 */

#ifndef XXH_NO_LONG_LONG
/*-**********************************************************************
*  64-bit hash
************************************************************************/
#if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
/*!
 * @brief An unsigned 64-bit integer.
 *
 * Not necessarily defined to `uint64_t` but functionally equivalent.
 */
typedef uint64_t XXH64_hash_t;
#elif !defined (__VMS) \
  && (defined (__cplusplus) \
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
#  include <stdint.h>
   typedef uint64_t XXH64_hash_t;
#else
#  include <limits.h>
#  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
     /* LP64 ABI says uint64_t is unsigned long */
     typedef unsigned long XXH64_hash_t;
#  else
     /* the following type must have a width of 64-bit */
     typedef unsigned long long XXH64_hash_t;
#  endif
#endif

/*!
 * @}
 *
 * @defgroup XXH64_family XXH64 family
 * @ingroup public
 * @{
 * Contains functions used in the classic 64-bit xxHash algorithm.
 *
 * @note
 *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
 *   and offers true 64/128 bit hash results.
 *   It provides better speed for systems with vector processing capabilities.
 */

/*!
 * @brief Calculates the 64-bit hash of @p input using xxHash64.
 *
 * This function usually runs faster on 64-bit systems, but slower on 32-bit
 * systems (see benchmark).
 *
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 * @param seed The 64-bit seed to alter the hash's output predictably.
 *
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return The calculated 64-bit hash.
 *
 * @see
 *    XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
 *    Direct equivalents for the other variants of xxHash.
 * @see
 *    XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);

/*******   Streaming   *******/
#ifndef XXH_NO_STREAM
/*!
 * @brief The opaque state struct for the XXH64 streaming API.
 *
 * @see XXH64_state_s for details.
 */
typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */

/*!
 * @brief Allocates an @ref XXH64_state_t.
 *
 * Must be freed with XXH64_freeState().
 * @return An allocated XXH64_state_t on success, `NULL` on failure.
 */
XXH_PUBLIC_API XXH_MALLOCF XXH64_state_t* XXH64_createState(void);

/*!
 * @brief Frees an @ref XXH64_state_t.
 *
 * Must be allocated with XXH64_createState().
 * @param statePtr A pointer to an @ref XXH64_state_t allocated with @ref XXH64_createState().
 * @return XXH_OK.
 */
XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);

/*!
 * @brief Copies one @ref XXH64_state_t to another.
 *
 * @param dst_state The state to copy to.
 * @param src_state The state to copy from.
 * @pre
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
 */
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dst_state, const XXH64_state_t* src_state);

/*!
 * @brief Resets an @ref XXH64_state_t to begin a new hash.
 *
 * This function resets and seeds a state. Call it before @ref XXH64_update().
 *
 * @param statePtr The state struct to reset.
 * @param seed The 64-bit seed to alter the hash result predictably.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed);

/*!
 * @brief Consumes a block of @p input to an @ref XXH64_state_t.
 *
 * Call this to incrementally consume blocks of data.
 *
 * @param statePtr The state struct to update.
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH_NOESCAPE XXH64_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);

/*!
 * @brief Returns the calculated hash value from an @ref XXH64_state_t.
 *
 * @note
 *   Calling XXH64_digest() will not affect @p statePtr, so you can update,
 *   digest, and update again.
 *
 * @param statePtr The state struct to calculate the hash from.
 *
 * @pre
 *  @p statePtr must not be `NULL`.
 *
 * @return The calculated xxHash64 value from that state.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_digest (XXH_NOESCAPE const XXH64_state_t* statePtr);
#endif /* !XXH_NO_STREAM */
/*******   Canonical representation   *******/

/*!
 * @brief Canonical (big endian) representation of @ref XXH64_hash_t.
 */
typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;

/*!
 * @brief Converts an @ref XXH64_hash_t to a big endian @ref XXH64_canonical_t.
 *
 * @param dst The @ref XXH64_canonical_t pointer to be stored to.
 * @param hash The @ref XXH64_hash_t to be converted.
 *
 * @pre
 *   @p dst must not be `NULL`.
 */
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash);

/*!
 * @brief Converts an @ref XXH64_canonical_t to a native @ref XXH64_hash_t.
 *
 * @param src The @ref XXH64_canonical_t to convert.
 *
 * @pre
 *   @p src must not be `NULL`.
 *
 * @return The converted hash.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src);

#ifndef XXH_NO_XXH3

/*!
 * @}
 * ************************************************************************
 * @defgroup XXH3_family XXH3 family
 * @ingroup public
 * @{
 *
 * XXH3 is a more recent hash algorithm featuring:
 *  - Improved speed for both small and large inputs
 *  - True 64-bit and 128-bit outputs
 *  - SIMD acceleration
 *  - Improved 32-bit viability
 *
 * Speed analysis methodology is explained here:
 *
 *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
 *
 * Compared to XXH64, expect XXH3 to run approximately
 * ~2x faster on large inputs and >3x faster on small ones,
 * exact differences vary depending on platform.
 *
 * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
 * but does not require it.
 * Most 32-bit and 64-bit targets that can run XXH32 smoothly can run XXH3
 * at competitive speeds, even without vector support. Further details are
 * explained in the implementation.
 *
 * XXH3 has a fast scalar implementation, but it also includes accelerated SIMD
 * implementations for many common platforms:
 *   - AVX512
 *   - AVX2
 *   - SSE2
 *   - ARM NEON
 *   - WebAssembly SIMD128
 *   - POWER8 VSX
 *   - s390x ZVector
 * This can be controlled via the @ref XXH_VECTOR macro, but it automatically
 * selects the best version according to predefined macros. For the x86 family, an
 * automatic runtime dispatcher is included separately in @ref xxh_x86dispatch.c.
 *
 * XXH3 implementation is portable:
 * it has a generic C90 formulation that can be compiled on any platform,
 * all implementations generate exactly the same hash value on all platforms.
 * Starting from v0.8.0, it's also labelled "stable", meaning that
 * any future version will also generate the same hash value.
 *
 * XXH3 offers 2 variants, _64bits and _128bits.
 *
 * When only 64 bits are needed, prefer invoking the _64bits variant, as it
 * reduces the amount of mixing, resulting in faster speed on small inputs.
 * It's also generally simpler to manipulate a scalar return type than a struct.
 *
 * The API supports one-shot hashing, streaming mode, and custom secrets.
 */
/*-**********************************************************************
*  XXH3 64-bit variant
************************************************************************/

/*!
 * @brief 64-bit unseeded variant of XXH3.
 *
 * This is equivalent to @ref XXH3_64bits_withSeed() with a seed of 0, however
 * it may have slightly better performance due to constant propagation of the
 * defaults.
 *
 * @see
 *    XXH32(), XXH64(), XXH3_128bits(): equivalent for the other xxHash algorithms
 * @see
 *    XXH3_64bits_withSeed(), XXH3_64bits_withSecret(): other seeding variants
 * @see
 *    XXH3_64bits_reset(), XXH3_64bits_update(), XXH3_64bits_digest(): Streaming version.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length);

/*!
 * @brief 64-bit seeded variant of XXH3
 *
 * This variant generates a custom secret on the fly based on default secret
 * altered using the `seed` value.
 *
 * While this operation is decently fast, note that it's not completely free.
 *
 * @note
 *    seed == 0 produces the same results as @ref XXH3_64bits().
 *
 * @param input The data to hash
 * @param length The length
 * @param seed The 64-bit seed to alter the state.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed);

/*!
 * The bare minimum size for a custom secret.
 *
 * @see
 *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
 *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
 */
#define XXH3_SECRET_SIZE_MIN 136

/*!
 * @brief 64-bit variant of XXH3 with a custom "secret".
 *
 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
 * This makes it more difficult for an external actor to prepare an intentional collision.
 * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
 * However, the quality of the secret impacts the dispersion of the hash algorithm.
 * Therefore, the secret _must_ look like a bunch of random bytes.
 * Avoid "trivial" or structured data such as repeated sequences or a text document.
 * Whenever in doubt about the "randomness" of the blob of bytes,
 * consider employing "XXH3_generateSecret()" instead (see below).
 * It will generate a proper high entropy secret derived from the blob of bytes.
 * Another advantage of using XXH3_generateSecret() is that
 * it guarantees that all bits within the initial blob of bytes
 * will impact every bit of the output.
 * This is not necessarily the case when using the blob of bytes directly
 * because, when hashing _small_ inputs, only a portion of the secret is employed.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t XXH3_64bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);


/*******   Streaming   *******/
#ifndef XXH_NO_STREAM
/*
 * Streaming requires state maintenance.
 * This operation costs memory and CPU.
 * As a consequence, streaming is slower than one-shot hashing.
 * For better performance, prefer one-shot functions whenever applicable.
 */

/*!
 * @brief The state struct for the XXH3 streaming API.
 *
 * @see XXH3_state_s for details.
 */
typedef struct XXH3_state_s XXH3_state_t;
XXH_PUBLIC_API XXH_MALLOCF XXH3_state_t* XXH3_createState(void);
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);

/*!
 * @brief Copies one @ref XXH3_state_t to another.
 *
 * @param dst_state The state to copy to.
 * @param src_state The state to copy from.
 * @pre
 *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
 */
XXH_PUBLIC_API void XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state);

/*!
 * @brief Resets an @ref XXH3_state_t to begin a new hash.
 *
 * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_64bits_update().
 * Digest will be equivalent to `XXH3_64bits()`.
 *
 * @param statePtr The state struct to reset.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 *
 */
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);

/*!
 * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
 *
 * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_64bits_update().
 * Digest will be equivalent to `XXH3_64bits_withSeed()`.
 *
 * @param statePtr The state struct to reset.
 * @param seed     The 64-bit seed to alter the state.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 *
 */
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);

/*!
 * XXH3_64bits_reset_withSecret():
 * `secret` is referenced, it _must outlive_ the hash streaming session.
 * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
 * and the quality of produced hash values depends on secret's entropy
 * (secret's content should look like a bunch of random bytes).
 * When in doubt about the randomness of a candidate `secret`,
 * consider employing `XXH3_generateSecret()` instead (see below).
 */
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);

/*!
 * @brief Consumes a block of @p input to an @ref XXH3_state_t.
 *
 * Call this to incrementally consume blocks of data.
 *
 * @param statePtr The state struct to update.
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);

/*!
 * @brief Returns the calculated XXH3 64-bit hash value from an @ref XXH3_state_t.
 *
 * @note
 *   Calling XXH3_64bits_digest() will not affect @p statePtr, so you can update,
 *   digest, and update again.
 *
 * @param statePtr The state struct to calculate the hash from.
 *
 * @pre
 *  @p statePtr must not be `NULL`.
 *
 * @return The calculated XXH3 64-bit hash value from that state.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t  XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */

/* note : canonical representation of XXH3 is the same as XXH64
 * since they both produce XXH64_hash_t values */


/*-**********************************************************************
*  XXH3 128-bit variant
************************************************************************/

/*!
 * @brief The return value from 128-bit hashes.
 *
 * Stored in little endian order, although the fields themselves are in native
 * endianness.
 */
typedef struct {
    XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
    XXH64_hash_t high64;  /*!< `value >> 64` */
} XXH128_hash_t;

/*!
 * @brief Unseeded 128-bit variant of XXH3
 *
 * The 128-bit variant of XXH3 has more strength, but it has a bit of overhead
 * for shorter inputs.
 *
 * This is equivalent to @ref XXH3_128bits_withSeed() with a seed of 0, however
 * it may have slightly better performance due to constant propagation of the
 * defaults.
 *
 * @see
 *    XXH32(), XXH64(), XXH3_64bits(): equivalent for the other xxHash algorithms
 * @see
 *    XXH3_128bits_withSeed(), XXH3_128bits_withSecret(): other seeding variants
 * @see
 *    XXH3_128bits_reset(), XXH3_128bits_update(), XXH3_128bits_digest(): Streaming version.
 */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* data, size_t len);
/*! @brief Seeded 128-bit variant of XXH3. @see XXH3_64bits_withSeed(). */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSeed(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);
/*! @brief Custom secret 128-bit variant of XXH3. @see XXH3_64bits_withSecret(). */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_withSecret(XXH_NOESCAPE const void* data, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize);

/*******   Streaming   *******/
#ifndef XXH_NO_STREAM
/*
 * Streaming requires state maintenance.
 * This operation costs memory and CPU.
 * As a consequence, streaming is slower than one-shot hashing.
 * For better performance, prefer one-shot functions whenever applicable.
 *
 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
 * Use already declared XXH3_createState() and XXH3_freeState().
 *
 * All reset and streaming functions have same meaning as their 64-bit counterpart.
 */

/*!
 * @brief Resets an @ref XXH3_state_t to begin a new hash.
 *
 * This function resets `statePtr` and generate a secret with default parameters. Call it before @ref XXH3_128bits_update().
 * Digest will be equivalent to `XXH3_128bits()`.
 *
 * @param statePtr The state struct to reset.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 *
 */
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr);

/*!
 * @brief Resets an @ref XXH3_state_t with 64-bit seed to begin a new hash.
 *
 * This function resets `statePtr` and generate a secret from `seed`. Call it before @ref XXH3_128bits_update().
 * Digest will be equivalent to `XXH3_128bits_withSeed()`.
 *
 * @param statePtr The state struct to reset.
 * @param seed     The 64-bit seed to alter the state.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 *
 */
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed);
/*! @brief Custom secret 128-bit variant of XXH3. @see XXH_64bits_reset_withSecret(). */
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize);

/*!
 * @brief Consumes a block of @p input to an @ref XXH3_state_t.
 *
 * Call this to incrementally consume blocks of data.
 *
 * @param statePtr The state struct to update.
 * @param input The block of data to be hashed, at least @p length bytes in size.
 * @param length The length of @p input, in bytes.
 *
 * @pre
 *   @p statePtr must not be `NULL`.
 * @pre
 *   The memory between @p input and @p input + @p length must be valid,
 *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 *
 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 */
XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* input, size_t length);

/*!
 * @brief Returns the calculated XXH3 128-bit hash value from an @ref XXH3_state_t.
 *
 * @note
 *   Calling XXH3_128bits_digest() will not affect @p statePtr, so you can update,
 *   digest, and update again.
 *
 * @param statePtr The state struct to calculate the hash from.
 *
 * @pre
 *  @p statePtr must not be `NULL`.
 *
 * @return The calculated XXH3 128-bit hash value from that state.
 */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* statePtr);
#endif /* !XXH_NO_STREAM */

/* Following helper functions make it possible to compare XXH128_hast_t values.
 * Since XXH128_hash_t is a structure, this capability is not offered by the language.
 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */

/*!
 * XXH128_isEqual():
 * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
 */
XXH_PUBLIC_API XXH_PUREF int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);

/*!
 * @brief Compares two @ref XXH128_hash_t
 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
 *
 * @return: >0 if *h128_1  > *h128_2
 *          =0 if *h128_1 == *h128_2
 *          <0 if *h128_1  < *h128_2
 */
XXH_PUBLIC_API XXH_PUREF int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2);


/*******   Canonical representation   *******/
typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;


/*!
 * @brief Converts an @ref XXH128_hash_t to a big endian @ref XXH128_canonical_t.
 *
 * @param dst The @ref XXH128_canonical_t pointer to be stored to.
 * @param hash The @ref XXH128_hash_t to be converted.
 *
 * @pre
 *   @p dst must not be `NULL`.
 */
XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash);

/*!
 * @brief Converts an @ref XXH128_canonical_t to a native @ref XXH128_hash_t.
 *
 * @param src The @ref XXH128_canonical_t to convert.
 *
 * @pre
 *   @p src must not be `NULL`.
 *
 * @return The converted hash.
 */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src);


#endif  /* !XXH_NO_XXH3 */
#endif  /* XXH_NO_LONG_LONG */

/*!
 * @}
 */
#endif /* XXHASH_H_5627135585666179 */



#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
#define XXHASH_H_STATIC_13879238742
/* ****************************************************************************
 * This section contains declarations which are not guaranteed to remain stable.
 * They may change in future versions, becoming incompatible with a different
 * version of the library.
 * These declarations should only be used with static linking.
 * Never use them in association with dynamic linking!
 ***************************************************************************** */

/*
 * These definitions are only present to allow static allocation
 * of XXH states, on stack or in a struct, for example.
 * Never **ever** access their members directly.
 */

/*!
 * @internal
 * @brief Structure for XXH32 streaming API.
 *
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
 * an opaque type. This allows fields to safely be changed.
 *
 * Typedef'd to @ref XXH32_state_t.
 * Do not access the members of this struct directly.
 * @see XXH64_state_s, XXH3_state_s
 */
struct XXH32_state_s {
   XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
   XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
   XXH32_hash_t v[4];         /*!< Accumulator lanes */
   XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
   XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
   XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
};   /* typedef'd to XXH32_state_t */


#ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */

/*!
 * @internal
 * @brief Structure for XXH64 streaming API.
 *
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
 * an opaque type. This allows fields to safely be changed.
 *
 * Typedef'd to @ref XXH64_state_t.
 * Do not access the members of this struct directly.
 * @see XXH32_state_s, XXH3_state_s
 */
struct XXH64_state_s {
   XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
   XXH64_hash_t v[4];         /*!< Accumulator lanes */
   XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
   XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
   XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
   XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
};   /* typedef'd to XXH64_state_t */

#ifndef XXH_NO_XXH3

#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
#  include <stdalign.h>
#  define XXH_ALIGN(n)      alignas(n)
#elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
/* In C++ alignas() is a keyword */
#  define XXH_ALIGN(n)      alignas(n)
#elif defined(__GNUC__)
#  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
#elif defined(_MSC_VER)
#  define XXH_ALIGN(n)      __declspec(align(n))
#else
#  define XXH_ALIGN(n)   /* disabled */
#endif

/* Old GCC versions only accept the attribute after the type in structures. */
#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
    && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
    && defined(__GNUC__)
#   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
#else
#   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
#endif

/*!
 * @brief The size of the internal XXH3 buffer.
 *
 * This is the optimal update size for incremental hashing.
 *
 * @see XXH3_64b_update(), XXH3_128b_update().
 */
#define XXH3_INTERNALBUFFER_SIZE 256

/*!
 * @internal
 * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
 *
 * This is the size used in @ref XXH3_kSecret and the seeded functions.
 *
 * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
 */
#define XXH3_SECRET_DEFAULT_SIZE 192

/*!
 * @internal
 * @brief Structure for XXH3 streaming API.
 *
 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
 * Otherwise it is an opaque type.
 * Never use this definition in combination with dynamic library.
 * This allows fields to safely be changed in the future.
 *
 * @note ** This structure has a strict alignment requirement of 64 bytes!! **
 * Do not allocate this with `malloc()` or `new`,
 * it will not be sufficiently aligned.
 * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
 *
 * Typedef'd to @ref XXH3_state_t.
 * Do never access the members of this struct directly.
 *
 * @see XXH3_INITSTATE() for stack initialization.
 * @see XXH3_createState(), XXH3_freeState().
 * @see XXH32_state_s, XXH64_state_s
 */
struct XXH3_state_s {
   XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
       /*!< The 8 accumulators. See @ref XXH32_state_s::v and @ref XXH64_state_s::v */
   XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
       /*!< Used to store a custom secret generated from a seed. */
   XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
       /*!< The internal buffer. @see XXH32_state_s::mem32 */
   XXH32_hash_t bufferedSize;
       /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
   XXH32_hash_t useSeed;
       /*!< Reserved field. Needed for padding on 64-bit. */
   size_t nbStripesSoFar;
       /*!< Number or stripes processed. */
   XXH64_hash_t totalLen;
       /*!< Total length hashed. 64-bit even on 32-bit targets. */
   size_t nbStripesPerBlock;
       /*!< Number of stripes per block. */
   size_t secretLimit;
       /*!< Size of @ref customSecret or @ref extSecret */
   XXH64_hash_t seed;
       /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
   XXH64_hash_t reserved64;
       /*!< Reserved field. */
   const unsigned char* extSecret;
       /*!< Reference to an external secret for the _withSecret variants, NULL
        *   for other variants. */
   /* note: there may be some padding at the end due to alignment on 64 bytes */
}; /* typedef'd to XXH3_state_t */

#undef XXH_ALIGN_MEMBER

/*!
 * @brief Initializes a stack-allocated `XXH3_state_s`.
 *
 * When the @ref XXH3_state_t structure is merely emplaced on stack,
 * it should be initialized with XXH3_INITSTATE() or a memset()
 * in case its first reset uses XXH3_NNbits_reset_withSeed().
 * This init can be omitted if the first reset uses default or _withSecret mode.
 * This operation isn't necessary when the state is created with XXH3_createState().
 * Note that this doesn't prepare the state for a streaming operation,
 * it's still necessary to use XXH3_NNbits_reset*() afterwards.
 */
#define XXH3_INITSTATE(XXH3_state_ptr)                       \
    do {                                                     \
        XXH3_state_t* tmp_xxh3_state_ptr = (XXH3_state_ptr); \
        tmp_xxh3_state_ptr->seed = 0;                        \
        tmp_xxh3_state_ptr->extSecret = NULL;                \
    } while(0)


/*!
 * simple alias to pre-selected XXH3_128bits variant
 */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t XXH128(XXH_NOESCAPE const void* data, size_t len, XXH64_hash_t seed);


/* ===   Experimental API   === */
/* Symbols defined below must be considered tied to a specific library version. */

/*!
 * XXH3_generateSecret():
 *
 * Derive a high-entropy secret from any user-defined content, named customSeed.
 * The generated secret can be used in combination with `*_withSecret()` functions.
 * The `_withSecret()` variants are useful to provide a higher level of protection
 * than 64-bit seed, as it becomes much more difficult for an external actor to
 * guess how to impact the calculation logic.
 *
 * The function accepts as input a custom seed of any length and any content,
 * and derives from it a high-entropy secret of length @p secretSize into an
 * already allocated buffer @p secretBuffer.
 *
 * The generated secret can then be used with any `*_withSecret()` variant.
 * The functions @ref XXH3_128bits_withSecret(), @ref XXH3_64bits_withSecret(),
 * @ref XXH3_128bits_reset_withSecret() and @ref XXH3_64bits_reset_withSecret()
 * are part of this list. They all accept a `secret` parameter
 * which must be large enough for implementation reasons (>= @ref XXH3_SECRET_SIZE_MIN)
 * _and_ feature very high entropy (consist of random-looking bytes).
 * These conditions can be a high bar to meet, so @ref XXH3_generateSecret() can
 * be employed to ensure proper quality.
 *
 * @p customSeed can be anything. It can have any size, even small ones,
 * and its content can be anything, even "poor entropy" sources such as a bunch
 * of zeroes. The resulting `secret` will nonetheless provide all required qualities.
 *
 * @pre
 *   - @p secretSize must be >= @ref XXH3_SECRET_SIZE_MIN
 *   - When @p customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
 *
 * Example code:
 * @code{.c}
 *    #include <stdio.h>
 *    #include <stdlib.h>
 *    #include <string.h>
 *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
 *    #include "xxhash.h"
 *    // Hashes argv[2] using the entropy from argv[1].
 *    int main(int argc, char* argv[])
 *    {
 *        char secret[XXH3_SECRET_SIZE_MIN];
 *        if (argv != 3) { return 1; }
 *        XXH3_generateSecret(secret, sizeof(secret), argv[1], strlen(argv[1]));
 *        XXH64_hash_t h = XXH3_64bits_withSecret(
 *             argv[2], strlen(argv[2]),
 *             secret, sizeof(secret)
 *        );
 *        printf("%016llx\n", (unsigned long long) h);
 *    }
 * @endcode
 */
XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize);

/*!
 * @brief Generate the same secret as the _withSeed() variants.
 *
 * The generated secret can be used in combination with
 *`*_withSecret()` and `_withSecretandSeed()` variants.
 *
 * Example C++ `std::string` hash class:
 * @code{.cpp}
 *    #include <string>
 *    #define XXH_STATIC_LINKING_ONLY // expose unstable API
 *    #include "xxhash.h"
 *    // Slow, seeds each time
 *    class HashSlow {
 *        XXH64_hash_t seed;
 *    public:
 *        HashSlow(XXH64_hash_t s) : seed{s} {}
 *        size_t operator()(const std::string& x) const {
 *            return size_t{XXH3_64bits_withSeed(x.c_str(), x.length(), seed)};
 *        }
 *    };
 *    // Fast, caches the seeded secret for future uses.
 *    class HashFast {
 *        unsigned char secret[XXH3_SECRET_SIZE_MIN];
 *    public:
 *        HashFast(XXH64_hash_t s) {
 *            XXH3_generateSecret_fromSeed(secret, seed);
 *        }
 *        size_t operator()(const std::string& x) const {
 *            return size_t{
 *                XXH3_64bits_withSecret(x.c_str(), x.length(), secret, sizeof(secret))
 *            };
 *        }
 *    };
 * @endcode
 * @param secretBuffer A writable buffer of @ref XXH3_SECRET_SIZE_MIN bytes
 * @param seed The seed to seed the state.
 */
XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed);

/*!
 * These variants generate hash values using either
 * @p seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
 * or @p secret for "large" keys (>= XXH3_MIDSIZE_MAX).
 *
 * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
 * `_withSeed()` has to generate the secret on the fly for "large" keys.
 * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
 * `_withSecret()` has to generate the masks on the fly for "small" keys,
 * which requires more instructions than _withSeed() variants.
 * Therefore, _withSecretandSeed variant combines the best of both worlds.
 *
 * When @p secret has been generated by XXH3_generateSecret_fromSeed(),
 * this variant produces *exactly* the same results as `_withSeed()` variant,
 * hence offering only a pure speed benefit on "large" input,
 * by skipping the need to regenerate the secret for every large input.
 *
 * Another usage scenario is to hash the secret to a 64-bit hash value,
 * for example with XXH3_64bits(), which then becomes the seed,
 * and then employ both the seed and the secret in _withSecretandSeed().
 * On top of speed, an added benefit is that each bit in the secret
 * has a 50% chance to swap each bit in the output, via its impact to the seed.
 *
 * This is not guaranteed when using the secret directly in "small data" scenarios,
 * because only portions of the secret are employed for small data.
 */
XXH_PUBLIC_API XXH_PUREF XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* data, size_t len,
                              XXH_NOESCAPE const void* secret, size_t secretSize,
                              XXH64_hash_t seed);
/*! @copydoc XXH3_64bits_withSecretandSeed() */
XXH_PUBLIC_API XXH_PUREF XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length,
                               XXH_NOESCAPE const void* secret, size_t secretSize,
                               XXH64_hash_t seed64);
#ifndef XXH_NO_STREAM
/*! @copydoc XXH3_64bits_withSecretandSeed() */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
                                    XXH_NOESCAPE const void* secret, size_t secretSize,
                                    XXH64_hash_t seed64);
/*! @copydoc XXH3_64bits_withSecretandSeed() */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr,
                                     XXH_NOESCAPE const void* secret, size_t secretSize,
                                     XXH64_hash_t seed64);
#endif /* !XXH_NO_STREAM */

#endif  /* !XXH_NO_XXH3 */
#endif  /* XXH_NO_LONG_LONG */
#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
#  define XXH_IMPLEMENTATION
#endif

#endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */


/* ======================================================================== */
/* ======================================================================== */
/* ======================================================================== */


/*-**********************************************************************
 * xxHash implementation
 *-**********************************************************************
 * xxHash's implementation used to be hosted inside xxhash.c.
 *
 * However, inlining requires implementation to be visible to the compiler,
 * hence be included alongside the header.
 * Previously, implementation was hosted inside xxhash.c,
 * which was then #included when inlining was activated.
 * This construction created issues with a few build and install systems,
 * as it required xxhash.c to be stored in /include directory.
 *
 * xxHash implementation is now directly integrated within xxhash.h.
 * As a consequence, xxhash.c is no longer needed in /include.
 *
 * xxhash.c is still available and is still useful.
 * In a "normal" setup, when xxhash is not inlined,
 * xxhash.h only exposes the prototypes and public symbols,
 * while xxhash.c can be built into an object file xxhash.o
 * which can then be linked into the final binary.
 ************************************************************************/

#if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
   || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
#  define XXH_IMPLEM_13a8737387

/* *************************************
*  Tuning parameters
***************************************/

/*!
 * @defgroup tuning Tuning parameters
 * @{
 *
 * Various macros to control xxHash's behavior.
 */
#ifdef XXH_DOXYGEN
/*!
 * @brief Define this to disable 64-bit code.
 *
 * Useful if only using the @ref XXH32_family and you have a strict C90 compiler.
 */
#  define XXH_NO_LONG_LONG
#  undef XXH_NO_LONG_LONG /* don't actually */
/*!
 * @brief Controls how unaligned memory is accessed.
 *
 * By default, access to unaligned memory is controlled by `memcpy()`, which is
 * safe and portable.
 *
 * Unfortunately, on some target/compiler combinations, the generated assembly
 * is sub-optimal.
 *
 * The below switch allow selection of a different access method
 * in the search for improved performance.
 *
 * @par Possible options:
 *
 *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
 *   @par
 *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
 *     eliminate the function call and treat it as an unaligned access.
 *
 *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((aligned(1)))`
 *   @par
 *     Depends on compiler extensions and is therefore not portable.
 *     This method is safe _if_ your compiler supports it,
 *     and *generally* as fast or faster than `memcpy`.
 *
 *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
 *  @par
 *     Casts directly and dereferences. This method doesn't depend on the
 *     compiler, but it violates the C standard as it directly dereferences an
 *     unaligned pointer. It can generate buggy code on targets which do not
 *     support unaligned memory accesses, but in some circumstances, it's the
 *     only known way to get the most performance.
 *
 *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
 *  @par
 *     Also portable. This can generate the best code on old compilers which don't
 *     inline small `memcpy()` calls, and it might also be faster on big-endian
 *     systems which lack a native byteswap instruction. However, some compilers
 *     will emit literal byteshifts even if the target supports unaligned access.
 *
 *
 * @warning
 *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
 *   care, as what works on one compiler/platform/optimization level may cause
 *   another to read garbage data or even crash.
 *
 * See https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
 *
 * Prefer these methods in priority order (0 > 3 > 1 > 2)
 */
#  define XXH_FORCE_MEMORY_ACCESS 0

/*!
 * @def XXH_SIZE_OPT
 * @brief Controls how much xxHash optimizes for size.
 *
 * xxHash, when compiled, tends to result in a rather large binary size. This
 * is mostly due to heavy usage to forced inlining and constant folding of the
 * @ref XXH3_family to increase performance.
 *
 * However, some developers prefer size over speed. This option can
 * significantly reduce the size of the generated code. When using the `-Os`
 * or `-Oz` options on GCC or Clang, this is defined to 1 by default,
 * otherwise it is defined to 0.
 *
 * Most of these size optimizations can be controlled manually.
 *
 * This is a number from 0-2.
 *  - `XXH_SIZE_OPT` == 0: Default. xxHash makes no size optimizations. Speed
 *    comes first.
 *  - `XXH_SIZE_OPT` == 1: Default for `-Os` and `-Oz`. xxHash is more
 *    conservative and disables hacks that increase code size. It implies the
 *    options @ref XXH_NO_INLINE_HINTS == 1, @ref XXH_FORCE_ALIGN_CHECK == 0,
 *    and @ref XXH3_NEON_LANES == 8 if they are not already defined.
 *  - `XXH_SIZE_OPT` == 2: xxHash tries to make itself as small as possible.
 *    Performance may cry. For example, the single shot functions just use the
 *    streaming API.
 */
#  define XXH_SIZE_OPT 0

/*!
 * @def XXH_FORCE_ALIGN_CHECK
 * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
 * and XXH64() only).
 *
 * This is an important performance trick for architectures without decent
 * unaligned memory access performance.
 *
 * It checks for input alignment, and when conditions are met, uses a "fast
 * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
 * faster_ read speed.
 *
 * The check costs one initial branch per hash, which is generally negligible,
 * but not zero.
 *
 * Moreover, it's not useful to generate an additional code path if memory
 * access uses the same instruction for both aligned and unaligned
 * addresses (e.g. x86 and aarch64).
 *
 * In these cases, the alignment check can be removed by setting this macro to 0.
 * Then the code will always use unaligned memory access.
 * Align check is automatically disabled on x86, x64, ARM64, and some ARM chips
 * which are platforms known to offer good unaligned memory accesses performance.
 *
 * It is also disabled by default when @ref XXH_SIZE_OPT >= 1.
 *
 * This option does not affect XXH3 (only XXH32 and XXH64).
 */
#  define XXH_FORCE_ALIGN_CHECK 0

/*!
 * @def XXH_NO_INLINE_HINTS
 * @brief When non-zero, sets all functions to `static`.
 *
 * By default, xxHash tries to force the compiler to inline almost all internal
 * functions.
 *
 * This can usually improve performance due to reduced jumping and improved
 * constant folding, but significantly increases the size of the binary which
 * might not be favorable.
 *
 * Additionally, sometimes the forced inlining can be detrimental to performance,
 * depending on the architecture.
 *
 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
 * compiler full control on whether to inline or not.
 *
 * When not optimizing (-O0), using `-fno-inline` with GCC or Clang, or if
 * @ref XXH_SIZE_OPT >= 1, this will automatically be defined.
 */
#  define XXH_NO_INLINE_HINTS 0

/*!
 * @def XXH3_INLINE_SECRET
 * @brief Determines whether to inline the XXH3 withSecret code.
 *
 * When the secret size is known, the compiler can improve the performance
 * of XXH3_64bits_withSecret() and XXH3_128bits_withSecret().
 *
 * However, if the secret size is not known, it doesn't have any benefit. This
 * happens when xxHash is compiled into a global symbol. Therefore, if
 * @ref XXH_INLINE_ALL is *not* defined, this will be defined to 0.
 *
 * Additionally, this defaults to 0 on GCC 12+, which has an issue with function pointers
 * that are *sometimes* force inline on -Og, and it is impossible to automatically
 * detect this optimization level.
 */
#  define XXH3_INLINE_SECRET 0

/*!
 * @def XXH32_ENDJMP
 * @brief Whether to use a jump for `XXH32_finalize`.
 *
 * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
 * This is generally preferable for performance,
 * but depending on exact architecture, a jmp may be preferable.
 *
 * This setting is only possibly making a difference for very small inputs.
 */
#  define XXH32_ENDJMP 0

/*!
 * @internal
 * @brief Redefines old internal names.
 *
 * For compatibility with code that uses xxHash's internals before the names
 * were changed to improve namespacing. There is no other reason to use this.
 */
#  define XXH_OLD_NAMES
#  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */

/*!
 * @def XXH_NO_STREAM
 * @brief Disables the streaming API.
 *
 * When xxHash is not inlined and the streaming functions are not used, disabling
 * the streaming functions can improve code size significantly, especially with
 * the @ref XXH3_family which tends to make constant folded copies of itself.
 */
#  define XXH_NO_STREAM
#  undef XXH_NO_STREAM /* don't actually */
#endif /* XXH_DOXYGEN */
/*!
 * @}
 */

#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
   /* prefer __packed__ structures (method 1) for GCC
    * < ARMv7 with unaligned access (e.g. Raspbian armhf) still uses byte shifting, so we use memcpy
    * which for some reason does unaligned loads. */
#  if defined(__GNUC__) && !(defined(__ARM_ARCH) && __ARM_ARCH < 7 && defined(__ARM_FEATURE_UNALIGNED))
#    define XXH_FORCE_MEMORY_ACCESS 1
#  endif
#endif

#ifndef XXH_SIZE_OPT
   /* default to 1 for -Os or -Oz */
#  if (defined(__GNUC__) || defined(__clang__)) && defined(__OPTIMIZE_SIZE__)
#    define XXH_SIZE_OPT 1
#  else
#    define XXH_SIZE_OPT 0
#  endif
#endif

#ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
   /* don't check on sizeopt, x86, aarch64, or arm when unaligned access is available */
#  if XXH_SIZE_OPT >= 1 || \
      defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) || defined(__ARM_FEATURE_UNALIGNED) \
   || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64)    || defined(_M_ARM) /* visual */
#    define XXH_FORCE_ALIGN_CHECK 0
#  else
#    define XXH_FORCE_ALIGN_CHECK 1
#  endif
#endif

#ifndef XXH_NO_INLINE_HINTS
#  if XXH_SIZE_OPT >= 1 || defined(__NO_INLINE__)  /* -O0, -fno-inline */
#    define XXH_NO_INLINE_HINTS 1
#  else
#    define XXH_NO_INLINE_HINTS 0
#  endif
#endif

#ifndef XXH3_INLINE_SECRET
#  if (defined(__GNUC__) && !defined(__clang__) && __GNUC__ >= 12) \
     || !defined(XXH_INLINE_ALL)
#    define XXH3_INLINE_SECRET 0
#  else
#    define XXH3_INLINE_SECRET 1
#  endif
#endif

#ifndef XXH32_ENDJMP
/* generally preferable for performance */
#  define XXH32_ENDJMP 0
#endif

/*!
 * @defgroup impl Implementation
 * @{
 */


/* *************************************
*  Includes & Memory related functions
***************************************/
#if defined(XXH_NO_STREAM)
/* nothing */
#elif defined(XXH_NO_STDLIB)

/* When requesting to disable any mention of stdlib,
 * the library loses the ability to invoked malloc / free.
 * In practice, it means that functions like `XXH*_createState()`
 * will always fail, and return NULL.
 * This flag is useful in situations where
 * xxhash.h is integrated into some kernel, embedded or limited environment
 * without access to dynamic allocation.
 */

static XXH_CONSTF void* XXH_malloc(size_t s) { (void)s; return NULL; }
static void XXH_free(void* p) { (void)p; }

#else

/*
 * Modify the local functions below should you wish to use
 * different memory routines for malloc() and free()
 */
#include <stdlib.h>

/*!
 * @internal
 * @brief Modify this function to use a different routine than malloc().
 */
static XXH_MALLOCF void* XXH_malloc(size_t s) { return malloc(s); }

/*!
 * @internal
 * @brief Modify this function to use a different routine than free().
 */
static void XXH_free(void* p) { free(p); }

#endif  /* XXH_NO_STDLIB */

#include <string.h>

/*!
 * @internal
 * @brief Modify this function to use a different routine than memcpy().
 */
static void* XXH_memcpy(void* dest, const void* src, size_t size)
{
    return memcpy(dest,src,size);
}

#include <limits.h>   /* ULLONG_MAX */


/* *************************************
*  Compiler Specific Options
***************************************/
#ifdef _MSC_VER /* Visual Studio warning fix */
#  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif

#if XXH_NO_INLINE_HINTS  /* disable inlining hints */
#  if defined(__GNUC__) || defined(__clang__)
#    define XXH_FORCE_INLINE static __attribute__((unused))
#  else
#    define XXH_FORCE_INLINE static
#  endif
#  define XXH_NO_INLINE static
/* enable inlining hints */
#elif defined(__GNUC__) || defined(__clang__)
#  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
#  define XXH_NO_INLINE static __attribute__((noinline))
#elif defined(_MSC_VER)  /* Visual Studio */
#  define XXH_FORCE_INLINE static __forceinline
#  define XXH_NO_INLINE static __declspec(noinline)
#elif defined (__cplusplus) \
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
#  define XXH_FORCE_INLINE static inline
#  define XXH_NO_INLINE static
#else
#  define XXH_FORCE_INLINE static
#  define XXH_NO_INLINE static
#endif

#if XXH3_INLINE_SECRET
#  define XXH3_WITH_SECRET_INLINE XXH_FORCE_INLINE
#else
#  define XXH3_WITH_SECRET_INLINE XXH_NO_INLINE
#endif


/* *************************************
*  Debug
***************************************/
/*!
 * @ingroup tuning
 * @def XXH_DEBUGLEVEL
 * @brief Sets the debugging level.
 *
 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
 * compiler's command line options. The value must be a number.
 */
#ifndef XXH_DEBUGLEVEL
#  ifdef DEBUGLEVEL /* backwards compat */
#    define XXH_DEBUGLEVEL DEBUGLEVEL
#  else
#    define XXH_DEBUGLEVEL 0
#  endif
#endif

#if (XXH_DEBUGLEVEL>=1)
#  include <assert.h>   /* note: can still be disabled with NDEBUG */
#  define XXH_ASSERT(c)   assert(c)
#else
#  if defined(__INTEL_COMPILER)
#    define XXH_ASSERT(c)   XXH_ASSUME((unsigned char) (c))
#  else
#    define XXH_ASSERT(c)   XXH_ASSUME(c)
#  endif
#endif

/* note: use after variable declarations */
#ifndef XXH_STATIC_ASSERT
#  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
#  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
#  else
#    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
#  endif
#  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
#endif

/*!
 * @internal
 * @def XXH_COMPILER_GUARD(var)
 * @brief Used to prevent unwanted optimizations for @p var.
 *
 * It uses an empty GCC inline assembly statement with a register constraint
 * which forces @p var into a general purpose register (eg eax, ebx, ecx
 * on x86) and marks it as modified.
 *
 * This is used in a few places to avoid unwanted autovectorization (e.g.
 * XXH32_round()). All vectorization we want is explicit via intrinsics,
 * and _usually_ isn't wanted elsewhere.
 *
 * We also use it to prevent unwanted constant folding for AArch64 in
 * XXH3_initCustomSecret_scalar().
 */
#if defined(__GNUC__) || defined(__clang__)
#  define XXH_COMPILER_GUARD(var) __asm__("" : "+r" (var))
#else
#  define XXH_COMPILER_GUARD(var) ((void)0)
#endif

/* Specifically for NEON vectors which use the "w" constraint, on
 * Clang. */
#if defined(__clang__) && defined(__ARM_ARCH) && !defined(__wasm__)
#  define XXH_COMPILER_GUARD_CLANG_NEON(var) __asm__("" : "+w" (var))
#else
#  define XXH_COMPILER_GUARD_CLANG_NEON(var) ((void)0)
#endif

/* *************************************
*  Basic Types
***************************************/
#if !defined (__VMS) \
 && (defined (__cplusplus) \
 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
  typedef uint8_t xxh_u8;
#else
  typedef unsigned char xxh_u8;
#endif
typedef XXH32_hash_t xxh_u32;

#ifdef XXH_OLD_NAMES
#  warning "XXH_OLD_NAMES is planned to be removed starting v0.9. If the program depends on it, consider moving away from it by employing newer type names directly"
#  define BYTE xxh_u8
#  define U8   xxh_u8
#  define U32  xxh_u32
#endif

/* ***   Memory access   *** */

/*!
 * @internal
 * @fn xxh_u32 XXH_read32(const void* ptr)
 * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
 *
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 *
 * @param ptr The pointer to read from.
 * @return The 32-bit native endian integer from the bytes at @p ptr.
 */

/*!
 * @internal
 * @fn xxh_u32 XXH_readLE32(const void* ptr)
 * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
 *
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 *
 * @param ptr The pointer to read from.
 * @return The 32-bit little endian integer from the bytes at @p ptr.
 */

/*!
 * @internal
 * @fn xxh_u32 XXH_readBE32(const void* ptr)
 * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
 *
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 *
 * @param ptr The pointer to read from.
 * @return The 32-bit big endian integer from the bytes at @p ptr.
 */

/*!
 * @internal
 * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
 * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
 *
 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
 * always @ref XXH_alignment::XXH_unaligned.
 *
 * @param ptr The pointer to read from.
 * @param align Whether @p ptr is aligned.
 * @pre
 *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
 *   aligned.
 * @return The 32-bit little endian integer from the bytes at @p ptr.
 */

#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
 * Manual byteshift. Best for old compilers which don't inline memcpy.
 * We actually directly use XXH_readLE32 and XXH_readBE32.
 */
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))

/*
 * Force direct memory access. Only works on CPU which support unaligned memory
 * access in hardware.
 */
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }

#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))

/*
 * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
 * documentation claimed that it only increased the alignment, but actually it
 * can decrease it on gcc, clang, and icc:
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
 * https://gcc.godbolt.org/z/xYez1j67Y.
 */
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
#endif
static xxh_u32 XXH_read32(const void* ptr)
{
    typedef __attribute__((aligned(1))) xxh_u32 xxh_unalign32;
    return *((const xxh_unalign32*)ptr);
}

#else

/*
 * Portable and safe solution. Generally efficient.
 * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
 */
static xxh_u32 XXH_read32(const void* memPtr)
{
    xxh_u32 val;
    XXH_memcpy(&val, memPtr, sizeof(val));
    return val;
}

#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */


/* ***   Endianness   *** */

/*!
 * @ingroup tuning
 * @def XXH_CPU_LITTLE_ENDIAN
 * @brief Whether the target is little endian.
 *
 * Defined to 1 if the target is little endian, or 0 if it is big endian.
 * It can be defined externally, for example on the compiler command line.
 *
 * If it is not defined,
 * a runtime check (which is usually constant folded) is used instead.
 *
 * @note
 *   This is not necessarily defined to an integer constant.
 *
 * @see XXH_isLittleEndian() for the runtime check.
 */
#ifndef XXH_CPU_LITTLE_ENDIAN
/*
 * Try to detect endianness automatically, to avoid the nonstandard behavior
 * in `XXH_isLittleEndian()`
 */
#  if defined(_WIN32) /* Windows is always little endian */ \
     || defined(__LITTLE_ENDIAN__) \
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#    define XXH_CPU_LITTLE_ENDIAN 1
#  elif defined(__BIG_ENDIAN__) \
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#    define XXH_CPU_LITTLE_ENDIAN 0
#  else
/*!
 * @internal
 * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
 *
 * Most compilers will constant fold this.
 */
static int XXH_isLittleEndian(void)
{
    /*
     * Portable and well-defined behavior.
     * Don't use static: it is detrimental to performance.
     */
    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
    return one.c[0];
}
#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
#  endif
#endif




/* ****************************************
*  Compiler-specific Functions and Macros
******************************************/
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)

#ifdef __has_builtin
#  define XXH_HAS_BUILTIN(x) __has_builtin(x)
#else
#  define XXH_HAS_BUILTIN(x) 0
#endif



/*
 * C23 and future versions have standard "unreachable()".
 * Once it has been implemented reliably we can add it as an
 * additional case:
 *
 * ```
 * #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= XXH_C23_VN)
 * #  include <stddef.h>
 * #  ifdef unreachable
 * #    define XXH_UNREACHABLE() unreachable()
 * #  endif
 * #endif
 * ```
 *
 * Note C++23 also has std::unreachable() which can be detected
 * as follows:
 * ```
 * #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L)
 * #  include <utility>
 * #  define XXH_UNREACHABLE() std::unreachable()
 * #endif
 * ```
 * NB: `__cpp_lib_unreachable` is defined in the `<version>` header.
 * We don't use that as including `<utility>` in `extern "C"` blocks
 * doesn't work on GCC12
 */

#if XXH_HAS_BUILTIN(__builtin_unreachable)
#  define XXH_UNREACHABLE() __builtin_unreachable()

#elif defined(_MSC_VER)
#  define XXH_UNREACHABLE() __assume(0)

#else
#  define XXH_UNREACHABLE()
#endif

#if XXH_HAS_BUILTIN(__builtin_assume)
#  define XXH_ASSUME(c) __builtin_assume(c)
#else
#  define XXH_ASSUME(c) if (!(c)) { XXH_UNREACHABLE(); }
#endif

/*!
 * @internal
 * @def XXH_rotl32(x,r)
 * @brief 32-bit rotate left.
 *
 * @param x The 32-bit integer to be rotated.
 * @param r The number of bits to rotate.
 * @pre
 *   @p r > 0 && @p r < 32
 * @note
 *   @p x and @p r may be evaluated multiple times.
 * @return The rotated result.
 */
#if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
                               && XXH_HAS_BUILTIN(__builtin_rotateleft64)
#  define XXH_rotl32 __builtin_rotateleft32
#  define XXH_rotl64 __builtin_rotateleft64
/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
#elif defined(_MSC_VER)
#  define XXH_rotl32(x,r) _rotl(x,r)
#  define XXH_rotl64(x,r) _rotl64(x,r)
#else
#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif

/*!
 * @internal
 * @fn xxh_u32 XXH_swap32(xxh_u32 x)
 * @brief A 32-bit byteswap.
 *
 * @param x The 32-bit integer to byteswap.
 * @return @p x, byteswapped.
 */
#if defined(_MSC_VER)     /* Visual Studio */
#  define XXH_swap32 _byteswap_ulong
#elif XXH_GCC_VERSION >= 403
#  define XXH_swap32 __builtin_bswap32
#else
static xxh_u32 XXH_swap32 (xxh_u32 x)
{
    return  ((x << 24) & 0xff000000 ) |
            ((x <<  8) & 0x00ff0000 ) |
            ((x >>  8) & 0x0000ff00 ) |
            ((x >> 24) & 0x000000ff );
}
#endif


/* ***************************
*  Memory reads
*****************************/

/*!
 * @internal
 * @brief Enum to indicate whether a pointer is aligned.
 */
typedef enum {
    XXH_aligned,  /*!< Aligned */
    XXH_unaligned /*!< Possibly unaligned */
} XXH_alignment;

/*
 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
 *
 * This is ideal for older compilers which don't inline memcpy.
 */
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))

XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
{
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    return bytePtr[0]
         | ((xxh_u32)bytePtr[1] << 8)
         | ((xxh_u32)bytePtr[2] << 16)
         | ((xxh_u32)bytePtr[3] << 24);
}

XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
{
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    return bytePtr[3]
         | ((xxh_u32)bytePtr[2] << 8)
         | ((xxh_u32)bytePtr[1] << 16)
         | ((xxh_u32)bytePtr[0] << 24);
}

#else
XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
}

static xxh_u32 XXH_readBE32(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}
#endif

XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void* ptr, XXH_alignment align)
{
    if (align==XXH_unaligned) {
        return XXH_readLE32(ptr);
    } else {
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
    }
}


/* *************************************
*  Misc
***************************************/
/*! @ingroup public */
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }


/* *******************************************************************
*  32-bit hash functions
*********************************************************************/
/*!
 * @}
 * @defgroup XXH32_impl XXH32 implementation
 * @ingroup impl
 *
 * Details on the XXH32 implementation.
 * @{
 */
 /* #define instead of static const, to be used as initializers */
#define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
#define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
#define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
#define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
#define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */

#ifdef XXH_OLD_NAMES
#  define PRIME32_1 XXH_PRIME32_1
#  define PRIME32_2 XXH_PRIME32_2
#  define PRIME32_3 XXH_PRIME32_3
#  define PRIME32_4 XXH_PRIME32_4
#  define PRIME32_5 XXH_PRIME32_5
#endif

/*!
 * @internal
 * @brief Normal stripe processing routine.
 *
 * This shuffles the bits so that any bit from @p input impacts several bits in
 * @p acc.
 *
 * @param acc The accumulator lane.
 * @param input The stripe of input to mix.
 * @return The mixed accumulator lane.
 */
static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
{
    acc += input * XXH_PRIME32_2;
    acc  = XXH_rotl32(acc, 13);
    acc *= XXH_PRIME32_1;
#if (defined(__SSE4_1__) || defined(__aarch64__) || defined(__wasm_simd128__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
    /*
     * UGLY HACK:
     * A compiler fence is the only thing that prevents GCC and Clang from
     * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
     * reason) without globally disabling SSE4.1.
     *
     * The reason we want to avoid vectorization is because despite working on
     * 4 integers at a time, there are multiple factors slowing XXH32 down on
     * SSE4:
     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
     *   newer chips!) making it slightly slower to multiply four integers at
     *   once compared to four integers independently. Even when pmulld was
     *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
     *   just to multiply unless doing a long operation.
     *
     * - Four instructions are required to rotate,
     *      movqda tmp,  v // not required with VEX encoding
     *      pslld  tmp, 13 // tmp <<= 13
     *      psrld  v,   19 // x >>= 19
     *      por    v,  tmp // x |= tmp
     *   compared to one for scalar:
     *      roll   v, 13    // reliably fast across the board
     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
     *
     * - Instruction level parallelism is actually more beneficial here because
     *   the SIMD actually serializes this operation: While v1 is rotating, v2
     *   can load data, while v3 can multiply. SSE forces them to operate
     *   together.
     *
     * This is also enabled on AArch64, as Clang is *very aggressive* in vectorizing
     * the loop. NEON is only faster on the A53, and with the newer cores, it is less
     * than half the speed.
     *
     * Additionally, this is used on WASM SIMD128 because it JITs to the same
     * SIMD instructions and has the same issue.
     */
    XXH_COMPILER_GUARD(acc);
#endif
    return acc;
}

/*!
 * @internal
 * @brief Mixes all bits to finalize the hash.
 *
 * The final mix ensures that all input bits have a chance to impact any bit in
 * the output digest, resulting in an unbiased distribution.
 *
 * @param hash The hash to avalanche.
 * @return The avalanched hash.
 */
static xxh_u32 XXH32_avalanche(xxh_u32 hash)
{
    hash ^= hash >> 15;
    hash *= XXH_PRIME32_2;
    hash ^= hash >> 13;
    hash *= XXH_PRIME32_3;
    hash ^= hash >> 16;
    return hash;
}

#define XXH_get32bits(p) XXH_readLE32_align(p, align)

/*!
 * @internal
 * @brief Processes the last 0-15 bytes of @p ptr.
 *
 * There may be up to 15 bytes remaining to consume from the input.
 * This final stage will digest them to ensure that all input bytes are present
 * in the final mix.
 *
 * @param hash The hash to finalize.
 * @param ptr The pointer to the remaining input.
 * @param len The remaining length, modulo 16.
 * @param align Whether @p ptr is aligned.
 * @return The finalized hash.
 * @see XXH64_finalize().
 */
static XXH_PUREF xxh_u32
XXH32_finalize(xxh_u32 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
#define XXH_PROCESS1 do {                             \
    hash += (*ptr++) * XXH_PRIME32_5;                 \
    hash = XXH_rotl32(hash, 11) * XXH_PRIME32_1;      \
} while (0)

#define XXH_PROCESS4 do {                             \
    hash += XXH_get32bits(ptr) * XXH_PRIME32_3;       \
    ptr += 4;                                         \
    hash  = XXH_rotl32(hash, 17) * XXH_PRIME32_4;     \
} while (0)

    if (ptr==NULL) XXH_ASSERT(len == 0);

    /* Compact rerolled version; generally faster */
    if (!XXH32_ENDJMP) {
        len &= 15;
        while (len >= 4) {
            XXH_PROCESS4;
            len -= 4;
        }
        while (len > 0) {
            XXH_PROCESS1;
            --len;
        }
        return XXH32_avalanche(hash);
    } else {
         switch(len&15) /* or switch(bEnd - p) */ {
           case 12:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 8:       XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 4:       XXH_PROCESS4;
                         return XXH32_avalanche(hash);

           case 13:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 9:       XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 5:       XXH_PROCESS4;
                         XXH_PROCESS1;
                         return XXH32_avalanche(hash);

           case 14:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 10:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 6:       XXH_PROCESS4;
                         XXH_PROCESS1;
                         XXH_PROCESS1;
                         return XXH32_avalanche(hash);

           case 15:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 11:      XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 7:       XXH_PROCESS4;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 3:       XXH_PROCESS1;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 2:       XXH_PROCESS1;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 1:       XXH_PROCESS1;
                         XXH_FALLTHROUGH;  /* fallthrough */
           case 0:       return XXH32_avalanche(hash);
        }
        XXH_ASSERT(0);
        return hash;   /* reaching this point is deemed impossible */
    }
}

#ifdef XXH_OLD_NAMES
#  define PROCESS1 XXH_PROCESS1
#  define PROCESS4 XXH_PROCESS4
#else
#  undef XXH_PROCESS1
#  undef XXH_PROCESS4
#endif

/*!
 * @internal
 * @brief The implementation for @ref XXH32().
 *
 * @param input , len , seed Directly passed from @ref XXH32().
 * @param align Whether @p input is aligned.
 * @return The calculated hash.
 */
XXH_FORCE_INLINE XXH_PUREF xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
    xxh_u32 h32;

    if (input==NULL) XXH_ASSERT(len == 0);

    if (len>=16) {
        const xxh_u8* const bEnd = input + len;
        const xxh_u8* const limit = bEnd - 15;
        xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
        xxh_u32 v2 = seed + XXH_PRIME32_2;
        xxh_u32 v3 = seed + 0;
        xxh_u32 v4 = seed - XXH_PRIME32_1;

        do {
            v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
            v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
            v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
            v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
        } while (input < limit);

        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
    } else {
        h32  = seed + XXH_PRIME32_5;
    }

    h32 += (xxh_u32)len;

    return XXH32_finalize(h32, input, len&15, align);
}

/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    XXH32_state_t state;
    XXH32_reset(&state, seed);
    XXH32_update(&state, (const xxh_u8*)input, len);
    return XXH32_digest(&state);
#else
    if (XXH_FORCE_ALIGN_CHECK) {
        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    }   }

    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}



/*******   Hash streaming   *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
    XXH_free(statePtr);
    return XXH_OK;
}

/*! @ingroup XXH32_family */
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
    XXH_memcpy(dstState, srcState, sizeof(*dstState));
}

/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
    XXH_ASSERT(statePtr != NULL);
    memset(statePtr, 0, sizeof(*statePtr));
    statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
    statePtr->v[1] = seed + XXH_PRIME32_2;
    statePtr->v[2] = seed + 0;
    statePtr->v[3] = seed - XXH_PRIME32_1;
    return XXH_OK;
}


/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
    if (input==NULL) {
        XXH_ASSERT(len == 0);
        return XXH_OK;
    }

    {   const xxh_u8* p = (const xxh_u8*)input;
        const xxh_u8* const bEnd = p + len;

        state->total_len_32 += (XXH32_hash_t)len;
        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));

        if (state->memsize + len < 16)  {   /* fill in tmp buffer */
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
            state->memsize += (XXH32_hash_t)len;
            return XXH_OK;
        }

        if (state->memsize) {   /* some data left from previous update */
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
            {   const xxh_u32* p32 = state->mem32;
                state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
                state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
                state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
                state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
            }
            p += 16-state->memsize;
            state->memsize = 0;
        }

        if (p <= bEnd-16) {
            const xxh_u8* const limit = bEnd - 16;

            do {
                state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
                state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
                state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
                state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
            } while (p<=limit);

        }

        if (p < bEnd) {
            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
            state->memsize = (unsigned)(bEnd-p);
        }
    }

    return XXH_OK;
}


/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
{
    xxh_u32 h32;

    if (state->large_len) {
        h32 = XXH_rotl32(state->v[0], 1)
            + XXH_rotl32(state->v[1], 7)
            + XXH_rotl32(state->v[2], 12)
            + XXH_rotl32(state->v[3], 18);
    } else {
        h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
    }

    h32 += state->total_len_32;

    return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */

/*******   Canonical representation   *******/

/*!
 * @ingroup XXH32_family
 * The default return values from XXH functions are unsigned 32 and 64 bit
 * integers.
 *
 * The canonical representation uses big endian convention, the same convention
 * as human-readable numbers (large digits first).
 *
 * This way, hash values can be written into a file or buffer, remaining
 * comparable across different systems.
 *
 * The following functions allow transformation of hash values to and from their
 * canonical format.
 */
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
    XXH_memcpy(dst, &hash, sizeof(*dst));
}
/*! @ingroup XXH32_family */
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
    return XXH_readBE32(src);
}


#ifndef XXH_NO_LONG_LONG

/* *******************************************************************
*  64-bit hash functions
*********************************************************************/
/*!
 * @}
 * @ingroup impl
 * @{
 */
/*******   Memory access   *******/

typedef XXH64_hash_t xxh_u64;

#ifdef XXH_OLD_NAMES
#  define U64 xxh_u64
#endif

#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
/*
 * Manual byteshift. Best for old compilers which don't inline memcpy.
 * We actually directly use XXH_readLE64 and XXH_readBE64.
 */
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))

/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static xxh_u64 XXH_read64(const void* memPtr)
{
    return *(const xxh_u64*) memPtr;
}

#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))

/*
 * __attribute__((aligned(1))) is supported by gcc and clang. Originally the
 * documentation claimed that it only increased the alignment, but actually it
 * can decrease it on gcc, clang, and icc:
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=69502,
 * https://gcc.godbolt.org/z/xYez1j67Y.
 */
#ifdef XXH_OLD_NAMES
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
#endif
static xxh_u64 XXH_read64(const void* ptr)
{
    typedef __attribute__((aligned(1))) xxh_u64 xxh_unalign64;
    return *((const xxh_unalign64*)ptr);
}

#else

/*
 * Portable and safe solution. Generally efficient.
 * see: https://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
 */
static xxh_u64 XXH_read64(const void* memPtr)
{
    xxh_u64 val;
    XXH_memcpy(&val, memPtr, sizeof(val));
    return val;
}

#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */

#if defined(_MSC_VER)     /* Visual Studio */
#  define XXH_swap64 _byteswap_uint64
#elif XXH_GCC_VERSION >= 403
#  define XXH_swap64 __builtin_bswap64
#else
static xxh_u64 XXH_swap64(xxh_u64 x)
{
    return  ((x << 56) & 0xff00000000000000ULL) |
            ((x << 40) & 0x00ff000000000000ULL) |
            ((x << 24) & 0x0000ff0000000000ULL) |
            ((x << 8)  & 0x000000ff00000000ULL) |
            ((x >> 8)  & 0x00000000ff000000ULL) |
            ((x >> 24) & 0x0000000000ff0000ULL) |
            ((x >> 40) & 0x000000000000ff00ULL) |
            ((x >> 56) & 0x00000000000000ffULL);
}
#endif


/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))

XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
{
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    return bytePtr[0]
         | ((xxh_u64)bytePtr[1] << 8)
         | ((xxh_u64)bytePtr[2] << 16)
         | ((xxh_u64)bytePtr[3] << 24)
         | ((xxh_u64)bytePtr[4] << 32)
         | ((xxh_u64)bytePtr[5] << 40)
         | ((xxh_u64)bytePtr[6] << 48)
         | ((xxh_u64)bytePtr[7] << 56);
}

XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
{
    const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
    return bytePtr[7]
         | ((xxh_u64)bytePtr[6] << 8)
         | ((xxh_u64)bytePtr[5] << 16)
         | ((xxh_u64)bytePtr[4] << 24)
         | ((xxh_u64)bytePtr[3] << 32)
         | ((xxh_u64)bytePtr[2] << 40)
         | ((xxh_u64)bytePtr[1] << 48)
         | ((xxh_u64)bytePtr[0] << 56);
}

#else
XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
}

static xxh_u64 XXH_readBE64(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}
#endif

XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void* ptr, XXH_alignment align)
{
    if (align==XXH_unaligned)
        return XXH_readLE64(ptr);
    else
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
}


/*******   xxh64   *******/
/*!
 * @}
 * @defgroup XXH64_impl XXH64 implementation
 * @ingroup impl
 *
 * Details on the XXH64 implementation.
 * @{
 */
/* #define rather that static const, to be used as initializers */
#define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
#define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
#define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
#define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
#define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */

#ifdef XXH_OLD_NAMES
#  define PRIME64_1 XXH_PRIME64_1
#  define PRIME64_2 XXH_PRIME64_2
#  define PRIME64_3 XXH_PRIME64_3
#  define PRIME64_4 XXH_PRIME64_4
#  define PRIME64_5 XXH_PRIME64_5
#endif

/*! @copydoc XXH32_round */
static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
{
    acc += input * XXH_PRIME64_2;
    acc  = XXH_rotl64(acc, 31);
    acc *= XXH_PRIME64_1;
    return acc;
}

static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
{
    val  = XXH64_round(0, val);
    acc ^= val;
    acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
    return acc;
}

/*! @copydoc XXH32_avalanche */
static xxh_u64 XXH64_avalanche(xxh_u64 hash)
{
    hash ^= hash >> 33;
    hash *= XXH_PRIME64_2;
    hash ^= hash >> 29;
    hash *= XXH_PRIME64_3;
    hash ^= hash >> 32;
    return hash;
}


#define XXH_get64bits(p) XXH_readLE64_align(p, align)

/*!
 * @internal
 * @brief Processes the last 0-31 bytes of @p ptr.
 *
 * There may be up to 31 bytes remaining to consume from the input.
 * This final stage will digest them to ensure that all input bytes are present
 * in the final mix.
 *
 * @param hash The hash to finalize.
 * @param ptr The pointer to the remaining input.
 * @param len The remaining length, modulo 32.
 * @param align Whether @p ptr is aligned.
 * @return The finalized hash
 * @see XXH32_finalize().
 */
static XXH_PUREF xxh_u64
XXH64_finalize(xxh_u64 hash, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
    if (ptr==NULL) XXH_ASSERT(len == 0);
    len &= 31;
    while (len >= 8) {
        xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
        ptr += 8;
        hash ^= k1;
        hash  = XXH_rotl64(hash,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
        len -= 8;
    }
    if (len >= 4) {
        hash ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
        ptr += 4;
        hash = XXH_rotl64(hash, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
        len -= 4;
    }
    while (len > 0) {
        hash ^= (*ptr++) * XXH_PRIME64_5;
        hash = XXH_rotl64(hash, 11) * XXH_PRIME64_1;
        --len;
    }
    return  XXH64_avalanche(hash);
}

#ifdef XXH_OLD_NAMES
#  define PROCESS1_64 XXH_PROCESS1_64
#  define PROCESS4_64 XXH_PROCESS4_64
#  define PROCESS8_64 XXH_PROCESS8_64
#else
#  undef XXH_PROCESS1_64
#  undef XXH_PROCESS4_64
#  undef XXH_PROCESS8_64
#endif

/*!
 * @internal
 * @brief The implementation for @ref XXH64().
 *
 * @param input , len , seed Directly passed from @ref XXH64().
 * @param align Whether @p input is aligned.
 * @return The calculated hash.
 */
XXH_FORCE_INLINE XXH_PUREF xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
    xxh_u64 h64;
    if (input==NULL) XXH_ASSERT(len == 0);

    if (len>=32) {
        const xxh_u8* const bEnd = input + len;
        const xxh_u8* const limit = bEnd - 31;
        xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
        xxh_u64 v2 = seed + XXH_PRIME64_2;
        xxh_u64 v3 = seed + 0;
        xxh_u64 v4 = seed - XXH_PRIME64_1;

        do {
            v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
            v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
            v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
            v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
        } while (input<limit);

        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
        h64 = XXH64_mergeRound(h64, v1);
        h64 = XXH64_mergeRound(h64, v2);
        h64 = XXH64_mergeRound(h64, v3);
        h64 = XXH64_mergeRound(h64, v4);

    } else {
        h64  = seed + XXH_PRIME64_5;
    }

    h64 += (xxh_u64) len;

    return XXH64_finalize(h64, input, len, align);
}


/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64 (XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
#if !defined(XXH_NO_STREAM) && XXH_SIZE_OPT >= 2
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    XXH64_state_t state;
    XXH64_reset(&state, seed);
    XXH64_update(&state, (const xxh_u8*)input, len);
    return XXH64_digest(&state);
#else
    if (XXH_FORCE_ALIGN_CHECK) {
        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    }   }

    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);

#endif
}

/*******   Hash Streaming   *******/
#ifndef XXH_NO_STREAM
/*! @ingroup XXH64_family*/
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
    XXH_free(statePtr);
    return XXH_OK;
}

/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_copyState(XXH_NOESCAPE XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
    XXH_memcpy(dstState, srcState, sizeof(*dstState));
}

/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH_NOESCAPE XXH64_state_t* statePtr, XXH64_hash_t seed)
{
    XXH_ASSERT(statePtr != NULL);
    memset(statePtr, 0, sizeof(*statePtr));
    statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
    statePtr->v[1] = seed + XXH_PRIME64_2;
    statePtr->v[2] = seed + 0;
    statePtr->v[3] = seed - XXH_PRIME64_1;
    return XXH_OK;
}

/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH_errorcode
XXH64_update (XXH_NOESCAPE XXH64_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
    if (input==NULL) {
        XXH_ASSERT(len == 0);
        return XXH_OK;
    }

    {   const xxh_u8* p = (const xxh_u8*)input;
        const xxh_u8* const bEnd = p + len;

        state->total_len += len;

        if (state->memsize + len < 32) {  /* fill in tmp buffer */
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
            state->memsize += (xxh_u32)len;
            return XXH_OK;
        }

        if (state->memsize) {   /* tmp buffer is full */
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
            state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
            state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
            state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
            state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
            p += 32 - state->memsize;
            state->memsize = 0;
        }

        if (p+32 <= bEnd) {
            const xxh_u8* const limit = bEnd - 32;

            do {
                state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
                state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
                state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
                state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
            } while (p<=limit);

        }

        if (p < bEnd) {
            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
            state->memsize = (unsigned)(bEnd-p);
        }
    }

    return XXH_OK;
}


/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_digest(XXH_NOESCAPE const XXH64_state_t* state)
{
    xxh_u64 h64;

    if (state->total_len >= 32) {
        h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
        h64 = XXH64_mergeRound(h64, state->v[0]);
        h64 = XXH64_mergeRound(h64, state->v[1]);
        h64 = XXH64_mergeRound(h64, state->v[2]);
        h64 = XXH64_mergeRound(h64, state->v[3]);
    } else {
        h64  = state->v[2] /*seed*/ + XXH_PRIME64_5;
    }

    h64 += (xxh_u64) state->total_len;

    return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
}
#endif /* !XXH_NO_STREAM */

/******* Canonical representation   *******/

/*! @ingroup XXH64_family */
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH_NOESCAPE XXH64_canonical_t* dst, XXH64_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
    XXH_memcpy(dst, &hash, sizeof(*dst));
}

/*! @ingroup XXH64_family */
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(XXH_NOESCAPE const XXH64_canonical_t* src)
{
    return XXH_readBE64(src);
}

#ifndef XXH_NO_XXH3

/* *********************************************************************
*  XXH3
*  New generation hash designed for speed on small keys and vectorization
************************************************************************ */
/*!
 * @}
 * @defgroup XXH3_impl XXH3 implementation
 * @ingroup impl
 * @{
 */

/* ===   Compiler specifics   === */

#if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
#  define XXH_RESTRICT   /* disable */
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
#  define XXH_RESTRICT   restrict
#elif (defined (__GNUC__) && ((__GNUC__ > 3) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))) \
   || (defined (__clang__)) \
   || (defined (_MSC_VER) && (_MSC_VER >= 1400)) \
   || (defined (__INTEL_COMPILER) && (__INTEL_COMPILER >= 1300))
/*
 * There are a LOT more compilers that recognize __restrict but this
 * covers the major ones.
 */
#  define XXH_RESTRICT   __restrict
#else
#  define XXH_RESTRICT   /* disable */
#endif

#if (defined(__GNUC__) && (__GNUC__ >= 3))  \
  || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
  || defined(__clang__)
#    define XXH_likely(x) __builtin_expect(x, 1)
#    define XXH_unlikely(x) __builtin_expect(x, 0)
#else
#    define XXH_likely(x) (x)
#    define XXH_unlikely(x) (x)
#endif

#ifndef XXH_HAS_INCLUDE
#  ifdef __has_include
#    define XXH_HAS_INCLUDE(x) __has_include(x)
#  else
#    define XXH_HAS_INCLUDE(x) 0
#  endif
#endif

#if defined(__GNUC__) || defined(__clang__)
#  if defined(__ARM_FEATURE_SVE)
#    include <arm_sve.h>
#  endif
#  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
   || (defined(_M_ARM) && _M_ARM >= 7) \
   || defined(_M_ARM64) || defined(_M_ARM64EC) \
   || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* WASM SIMD128 via SIMDe */
#    define inline __inline__  /* circumvent a clang bug */
#    include <arm_neon.h>
#    undef inline
#  elif defined(__AVX2__)
#    include <immintrin.h>
#  elif defined(__SSE2__)
#    include <emmintrin.h>
#  endif
#endif

#if defined(_MSC_VER)
#  include <intrin.h>
#endif

/*
 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
 * remaining a true 64-bit/128-bit hash function.
 *
 * This is done by prioritizing a subset of 64-bit operations that can be
 * emulated without too many steps on the average 32-bit machine.
 *
 * For example, these two lines seem similar, and run equally fast on 64-bit:
 *
 *   xxh_u64 x;
 *   x ^= (x >> 47); // good
 *   x ^= (x >> 13); // bad
 *
 * However, to a 32-bit machine, there is a major difference.
 *
 * x ^= (x >> 47) looks like this:
 *
 *   x.lo ^= (x.hi >> (47 - 32));
 *
 * while x ^= (x >> 13) looks like this:
 *
 *   // note: funnel shifts are not usually cheap.
 *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
 *   x.hi ^= (x.hi >> 13);
 *
 * The first one is significantly faster than the second, simply because the
 * shift is larger than 32. This means:
 *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
 *    32 bits in the shift.
 *  - The shift result will always fit in the lower 32 bits, and therefore,
 *    we can ignore the upper 32 bits in the xor.
 *
 * Thanks to this optimization, XXH3 only requires these features to be efficient:
 *
 *  - Usable unaligned access
 *  - A 32-bit or 64-bit ALU
 *      - If 32-bit, a decent ADC instruction
 *  - A 32 or 64-bit multiply with a 64-bit result
 *  - For the 128-bit variant, a decent byteswap helps short inputs.
 *
 * The first two are already required by XXH32, and almost all 32-bit and 64-bit
 * platforms which can run XXH32 can run XXH3 efficiently.
 *
 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
 * notable exception.
 *
 * First of all, Thumb-1 lacks support for the UMULL instruction which
 * performs the important long multiply. This means numerous __aeabi_lmul
 * calls.
 *
 * Second of all, the 8 functional registers are just not enough.
 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
 * Lo registers, and this shuffling results in thousands more MOVs than A32.
 *
 * A32 and T32 don't have this limitation. They can access all 14 registers,
 * do a 32->64 multiply with UMULL, and the flexible operand allowing free
 * shifts is helpful, too.
 *
 * Therefore, we do a quick sanity check.
 *
 * If compiling Thumb-1 for a target which supports ARM instructions, we will
 * emit a warning, as it is not a "sane" platform to compile for.
 *
 * Usually, if this happens, it is because of an accident and you probably need
 * to specify -march, as you likely meant to compile for a newer architecture.
 *
 * Credit: large sections of the vectorial and asm source code paths
 *         have been contributed by @easyaspi314
 */
#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
#   warning "XXH3 is highly inefficient without ARM or Thumb-2."
#endif

/* ==========================================
 * Vectorization detection
 * ========================================== */

#ifdef XXH_DOXYGEN
/*!
 * @ingroup tuning
 * @brief Overrides the vectorization implementation chosen for XXH3.
 *
 * Can be defined to 0 to disable SIMD or any of the values mentioned in
 * @ref XXH_VECTOR_TYPE.
 *
 * If this is not defined, it uses predefined macros to determine the best
 * implementation.
 */
#  define XXH_VECTOR XXH_SCALAR
/*!
 * @ingroup tuning
 * @brief Possible values for @ref XXH_VECTOR.
 *
 * Note that these are actually implemented as macros.
 *
 * If this is not defined, it is detected automatically.
 * internal macro XXH_X86DISPATCH overrides this.
 */
enum XXH_VECTOR_TYPE /* fake enum */ {
    XXH_SCALAR = 0,  /*!< Portable scalar version */
    XXH_SSE2   = 1,  /*!<
                      * SSE2 for Pentium 4, Opteron, all x86_64.
                      *
                      * @note SSE2 is also guaranteed on Windows 10, macOS, and
                      * Android x86.
                      */
    XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
    XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
    XXH_NEON   = 4,  /*!<
                       * NEON for most ARMv7-A, all AArch64, and WASM SIMD128
                       * via the SIMDeverywhere polyfill provided with the
                       * Emscripten SDK.
                       */
    XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
    XXH_SVE    = 6,  /*!< SVE for some ARMv8-A and ARMv9-A */
};
/*!
 * @ingroup tuning
 * @brief Selects the minimum alignment for XXH3's accumulators.
 *
 * When using SIMD, this should match the alignment required for said vector
 * type, so, for example, 32 for AVX2.
 *
 * Default: Auto detected.
 */
#  define XXH_ACC_ALIGN 8
#endif

/* Actual definition */
#ifndef XXH_DOXYGEN
#  define XXH_SCALAR 0
#  define XXH_SSE2   1
#  define XXH_AVX2   2
#  define XXH_AVX512 3
#  define XXH_NEON   4
#  define XXH_VSX    5
#  define XXH_SVE    6
#endif

#ifndef XXH_VECTOR    /* can be defined on command line */
#  if defined(__ARM_FEATURE_SVE)
#    define XXH_VECTOR XXH_SVE
#  elif ( \
        defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
     || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
     || (defined(__wasm_simd128__) && XXH_HAS_INCLUDE(<arm_neon.h>)) /* wasm simd128 via SIMDe */ \
   ) && ( \
        defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
    || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
   )
#    define XXH_VECTOR XXH_NEON
#  elif defined(__AVX512F__)
#    define XXH_VECTOR XXH_AVX512
#  elif defined(__AVX2__)
#    define XXH_VECTOR XXH_AVX2
#  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
#    define XXH_VECTOR XXH_SSE2
#  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
     || (defined(__s390x__) && defined(__VEC__)) \
     && defined(__GNUC__) /* TODO: IBM XL */
#    define XXH_VECTOR XXH_VSX
#  else
#    define XXH_VECTOR XXH_SCALAR
#  endif
#endif

/* __ARM_FEATURE_SVE is only supported by GCC & Clang. */
#if (XXH_VECTOR == XXH_SVE) && !defined(__ARM_FEATURE_SVE)
#  ifdef _MSC_VER
#    pragma warning(once : 4606)
#  else
#    warning "__ARM_FEATURE_SVE isn't supported. Use SCALAR instead."
#  endif
#  undef XXH_VECTOR
#  define XXH_VECTOR XXH_SCALAR
#endif

/*
 * Controls the alignment of the accumulator,
 * for compatibility with aligned vector loads, which are usually faster.
 */
#ifndef XXH_ACC_ALIGN
#  if defined(XXH_X86DISPATCH)
#     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
#  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
#     define XXH_ACC_ALIGN 8
#  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
#     define XXH_ACC_ALIGN 16
#  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
#     define XXH_ACC_ALIGN 32
#  elif XXH_VECTOR == XXH_NEON  /* neon */
#     define XXH_ACC_ALIGN 16
#  elif XXH_VECTOR == XXH_VSX   /* vsx */
#     define XXH_ACC_ALIGN 16
#  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
#     define XXH_ACC_ALIGN 64
#  elif XXH_VECTOR == XXH_SVE   /* sve */
#     define XXH_ACC_ALIGN 64
#  endif
#endif

#if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
    || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
#elif XXH_VECTOR == XXH_SVE
#  define XXH_SEC_ALIGN XXH_ACC_ALIGN
#else
#  define XXH_SEC_ALIGN 8
#endif

#if defined(__GNUC__) || defined(__clang__)
#  define XXH_ALIASING __attribute__((may_alias))
#else
#  define XXH_ALIASING /* nothing */
#endif

/*
 * UGLY HACK:
 * GCC usually generates the best code with -O3 for xxHash.
 *
 * However, when targeting AVX2, it is overzealous in its unrolling resulting
 * in code roughly 3/4 the speed of Clang.
 *
 * There are other issues, such as GCC splitting _mm256_loadu_si256 into
 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
 * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
 *
 * That is why when compiling the AVX2 version, it is recommended to use either
 *   -O2 -mavx2 -march=haswell
 * or
 *   -O2 -mavx2 -mno-avx256-split-unaligned-load
 * for decent performance, or to use Clang instead.
 *
 * Fortunately, we can control the first one with a pragma that forces GCC into
 * -O2, but the other one we can't control without "failed to inline always
 * inline function due to target mismatch" warnings.
 */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
#  pragma GCC push_options
#  pragma GCC optimize("-O2")
#endif

#if XXH_VECTOR == XXH_NEON

/*
 * UGLY HACK: While AArch64 GCC on Linux does not seem to care, on macOS, GCC -O3
 * optimizes out the entire hashLong loop because of the aliasing violation.
 *
 * However, GCC is also inefficient at load-store optimization with vld1q/vst1q,
 * so the only option is to mark it as aliasing.
 */
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;

/*!
 * @internal
 * @brief `vld1q_u64` but faster and alignment-safe.
 *
 * On AArch64, unaligned access is always safe, but on ARMv7-a, it is only
 * *conditionally* safe (`vld1` has an alignment bit like `movdq[ua]` in x86).
 *
 * GCC for AArch64 sees `vld1q_u8` as an intrinsic instead of a load, so it
 * prohibits load-store optimizations. Therefore, a direct dereference is used.
 *
 * Otherwise, `vld1q_u8` is used with `vreinterpretq_u8_u64` to do a safe
 * unaligned load.
 */
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__)
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr) /* silence -Wcast-align */
{
    return *(xxh_aliasing_uint64x2_t const *)ptr;
}
#else
XXH_FORCE_INLINE uint64x2_t XXH_vld1q_u64(void const* ptr)
{
    return vreinterpretq_u64_u8(vld1q_u8((uint8_t const*)ptr));
}
#endif

/*!
 * @internal
 * @brief `vmlal_u32` on low and high halves of a vector.
 *
 * This is a workaround for AArch64 GCC < 11 which implemented arm_neon.h with
 * inline assembly and were therefore incapable of merging the `vget_{low, high}_u32`
 * with `vmlal_u32`.
 */
#if defined(__aarch64__) && defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 11
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
    /* Inline assembly is the only way */
    __asm__("umlal   %0.2d, %1.2s, %2.2s" : "+w" (acc) : "w" (lhs), "w" (rhs));
    return acc;
}
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
    /* This intrinsic works as expected */
    return vmlal_high_u32(acc, lhs, rhs);
}
#else
/* Portable intrinsic versions */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_low_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
    return vmlal_u32(acc, vget_low_u32(lhs), vget_low_u32(rhs));
}
/*! @copydoc XXH_vmlal_low_u32
 * Assume the compiler converts this to vmlal_high_u32 on aarch64 */
XXH_FORCE_INLINE uint64x2_t
XXH_vmlal_high_u32(uint64x2_t acc, uint32x4_t lhs, uint32x4_t rhs)
{
    return vmlal_u32(acc, vget_high_u32(lhs), vget_high_u32(rhs));
}
#endif

/*!
 * @ingroup tuning
 * @brief Controls the NEON to scalar ratio for XXH3
 *
 * This can be set to 2, 4, 6, or 8.
 *
 * ARM Cortex CPUs are _very_ sensitive to how their pipelines are used.
 *
 * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but only 2 of those
 * can be NEON. If you are only using NEON instructions, you are only using 2/3 of the CPU
 * bandwidth.
 *
 * This is even more noticeable on the more advanced cores like the Cortex-A76 which
 * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
 *
 * Therefore, to make the most out of the pipeline, it is beneficial to run 6 NEON lanes
 * and 2 scalar lanes, which is chosen by default.
 *
 * This does not apply to Apple processors or 32-bit processors, which run better with
 * full NEON. These will default to 8. Additionally, size-optimized builds run 8 lanes.
 *
 * This change benefits CPUs with large micro-op buffers without negatively affecting
 * most other CPUs:
 *
 *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
 *  |:----------------------|:--------------------|----------:|-----------:|------:|
 *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
 *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
 *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
 *  | Apple M1              | 4 NEON/8 micro-ops  | 37.3 GB/s |  36.1 GB/s |  ~-3% |
 *
 * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
 *
 * When using WASM SIMD128, if this is 2 or 6, SIMDe will scalarize 2 of the lanes meaning
 * it effectively becomes worse 4.
 *
 * @see XXH3_accumulate_512_neon()
 */
# ifndef XXH3_NEON_LANES
#  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
   && !defined(__APPLE__) && XXH_SIZE_OPT <= 0
#   define XXH3_NEON_LANES 6
#  else
#   define XXH3_NEON_LANES XXH_ACC_NB
#  endif
# endif
#endif  /* XXH_VECTOR == XXH_NEON */

/*
 * VSX and Z Vector helpers.
 *
 * This is very messy, and any pull requests to clean this up are welcome.
 *
 * There are a lot of problems with supporting VSX and s390x, due to
 * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
 */
#if XXH_VECTOR == XXH_VSX
/* Annoyingly, these headers _may_ define three macros: `bool`, `vector`,
 * and `pixel`. This is a problem for obvious reasons.
 *
 * These keywords are unnecessary; the spec literally says they are
 * equivalent to `__bool`, `__vector`, and `__pixel` and may be undef'd
 * after including the header.
 *
 * We use pragma push_macro/pop_macro to keep the namespace clean. */
#  pragma push_macro("bool")
#  pragma push_macro("vector")
#  pragma push_macro("pixel")
/* silence potential macro redefined warnings */
#  undef bool
#  undef vector
#  undef pixel

#  if defined(__s390x__)
#    include <s390intrin.h>
#  else
#    include <altivec.h>
#  endif

/* Restore the original macro values, if applicable. */
#  pragma pop_macro("pixel")
#  pragma pop_macro("vector")
#  pragma pop_macro("bool")

typedef __vector unsigned long long xxh_u64x2;
typedef __vector unsigned char xxh_u8x16;
typedef __vector unsigned xxh_u32x4;

/*
 * UGLY HACK: Similar to aarch64 macOS GCC, s390x GCC has the same aliasing issue.
 */
typedef xxh_u64x2 xxh_aliasing_u64x2 XXH_ALIASING;

# ifndef XXH_VSX_BE
#  if defined(__BIG_ENDIAN__) \
  || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#    define XXH_VSX_BE 1
#  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
#    warning "-maltivec=be is not recommended. Please use native endianness."
#    define XXH_VSX_BE 1
#  else
#    define XXH_VSX_BE 0
#  endif
# endif /* !defined(XXH_VSX_BE) */

# if XXH_VSX_BE
#  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
#    define XXH_vec_revb vec_revb
#  else
/*!
 * A polyfill for POWER9's vec_revb().
 */
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
{
    xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
                                  0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
    return vec_perm(val, val, vByteSwap);
}
#  endif
# endif /* XXH_VSX_BE */

/*!
 * Performs an unaligned vector load and byte swaps it on big endian.
 */
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
{
    xxh_u64x2 ret;
    XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
# if XXH_VSX_BE
    ret = XXH_vec_revb(ret);
# endif
    return ret;
}

/*
 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
 *
 * These intrinsics weren't added until GCC 8, despite existing for a while,
 * and they are endian dependent. Also, their meaning swap depending on version.
 * */
# if defined(__s390x__)
 /* s390x is always big endian, no issue on this platform */
#  define XXH_vec_mulo vec_mulo
#  define XXH_vec_mule vec_mule
# elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) && !defined(__ibmxl__)
/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
 /* The IBM XL Compiler (which defined __clang__) only implements the vec_* operations */
#  define XXH_vec_mulo __builtin_altivec_vmulouw
#  define XXH_vec_mule __builtin_altivec_vmuleuw
# else
/* gcc needs inline assembly */
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
{
    xxh_u64x2 result;
    __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    return result;
}
XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
{
    xxh_u64x2 result;
    __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
    return result;
}
# endif /* XXH_vec_mulo, XXH_vec_mule */
#endif /* XXH_VECTOR == XXH_VSX */

#if XXH_VECTOR == XXH_SVE
#define ACCRND(acc, offset) \
do { \
    svuint64_t input_vec = svld1_u64(mask, xinput + offset);         \
    svuint64_t secret_vec = svld1_u64(mask, xsecret + offset);       \
    svuint64_t mixed = sveor_u64_x(mask, secret_vec, input_vec);     \
    svuint64_t swapped = svtbl_u64(input_vec, kSwap);                \
    svuint64_t mixed_lo = svextw_u64_x(mask, mixed);                 \
    svuint64_t mixed_hi = svlsr_n_u64_x(mask, mixed, 32);            \
    svuint64_t mul = svmad_u64_x(mask, mixed_lo, mixed_hi, swapped); \
    acc = svadd_u64_x(mask, acc, mul);                               \
} while (0)
#endif /* XXH_VECTOR == XXH_SVE */

/* prefetch
 * can be disabled, by declaring XXH_NO_PREFETCH build macro */
#if defined(XXH_NO_PREFETCH)
#  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
#else
#  if XXH_SIZE_OPT >= 1
#    define XXH_PREFETCH(ptr) (void)(ptr)
#  elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
#    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
#    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
#  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
#    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
#  else
#    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
#  endif
#endif  /* XXH_NO_PREFETCH */


/* ==========================================
 * XXH3 default settings
 * ========================================== */

#define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */

#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
#  error "default keyset is not large enough"
#endif

/*! Pseudorandom secret taken directly from FARSH. */
XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
    0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
    0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
    0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
    0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
    0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
    0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
    0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
    0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
    0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
    0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};

static const xxh_u64 PRIME_MX1 = 0x165667919E3779F9ULL;  /*!< 0b0001011001010110011001111001000110011110001101110111100111111001 */
static const xxh_u64 PRIME_MX2 = 0x9FB21C651E98DF25ULL;  /*!< 0b1001111110110010000111000110010100011110100110001101111100100101 */

#ifdef XXH_OLD_NAMES
#  define kSecret XXH3_kSecret
#endif

#ifdef XXH_DOXYGEN
/*!
 * @brief Calculates a 32-bit to 64-bit long multiply.
 *
 * Implemented as a macro.
 *
 * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
 * need to (but it shouldn't need to anyways, it is about 7 instructions to do
 * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
 * use that instead of the normal method.
 *
 * If you are compiling for platforms like Thumb-1 and don't have a better option,
 * you may also want to write your own long multiply routine here.
 *
 * @param x, y Numbers to be multiplied
 * @return 64-bit product of the low 32 bits of @p x and @p y.
 */
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64(xxh_u64 x, xxh_u64 y)
{
   return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
}
#elif defined(_MSC_VER) && defined(_M_IX86)
#    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
#else
/*
 * Downcast + upcast is usually better than masking on older compilers like
 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
 *
 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
 * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
 */
#    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
#endif

/*!
 * @brief Calculates a 64->128-bit long multiply.
 *
 * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
 * version.
 *
 * @param lhs , rhs The 64-bit integers to be multiplied
 * @return The 128-bit result represented in an @ref XXH128_hash_t.
 */
static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
{
    /*
     * GCC/Clang __uint128_t method.
     *
     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
     * This is usually the best way as it usually uses a native long 64-bit
     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
     *
     * Usually.
     *
     * Despite being a 32-bit platform, Clang (and emscripten) define this type
     * despite not having the arithmetic for it. This results in a laggy
     * compiler builtin call which calculates a full 128-bit multiply.
     * In that case it is best to use the portable one.
     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
     */
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
    && defined(__SIZEOF_INT128__) \
    || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)

    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
    XXH128_hash_t r128;
    r128.low64  = (xxh_u64)(product);
    r128.high64 = (xxh_u64)(product >> 64);
    return r128;

    /*
     * MSVC for x64's _umul128 method.
     *
     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
     *
     * This compiles to single operand MUL on x64.
     */
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)

#ifndef _MSC_VER
#   pragma intrinsic(_umul128)
#endif
    xxh_u64 product_high;
    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
    XXH128_hash_t r128;
    r128.low64  = product_low;
    r128.high64 = product_high;
    return r128;

    /*
     * MSVC for ARM64's __umulh method.
     *
     * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
     */
#elif defined(_M_ARM64) || defined(_M_ARM64EC)

#ifndef _MSC_VER
#   pragma intrinsic(__umulh)
#endif
    XXH128_hash_t r128;
    r128.low64  = lhs * rhs;
    r128.high64 = __umulh(lhs, rhs);
    return r128;

#else
    /*
     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
     *
     * This is a fast and simple grade school multiply, which is shown below
     * with base 10 arithmetic instead of base 0x100000000.
     *
     *           9 3 // D2 lhs = 93
     *         x 7 5 // D2 rhs = 75
     *     ----------
     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
     *     ---------
     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
     *     ---------
     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
     *
     * The reasons for adding the products like this are:
     *  1. It avoids manual carry tracking. Just like how
     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
     *     This avoids a lot of complexity.
     *
     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
     *     instruction available in ARM's Digital Signal Processing extension
     *     in 32-bit ARMv6 and later, which is shown below:
     *
     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
     *         {
     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
     *             *RdHi = (xxh_u32)(product >> 32);
     *         }
     *
     *     This instruction was designed for efficient long multiplication, and
     *     allows this to be calculated in only 4 instructions at speeds
     *     comparable to some 64-bit ALUs.
     *
     *  3. It isn't terrible on other platforms. Usually this will be a couple
     *     of 32-bit ADD/ADCs.
     */

    /* First calculate all of the cross products. */
    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);

    /* Now add the products together. These will never overflow. */
    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);

    XXH128_hash_t r128;
    r128.low64  = lower;
    r128.high64 = upper;
    return r128;
#endif
}

/*!
 * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
 *
 * The reason for the separate function is to prevent passing too many structs
 * around by value. This will hopefully inline the multiply, but we don't force it.
 *
 * @param lhs , rhs The 64-bit integers to multiply
 * @return The low 64 bits of the product XOR'd by the high 64 bits.
 * @see XXH_mult64to128()
 */
static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
{
    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
    return product.low64 ^ product.high64;
}

/*! Seems to produce slightly better code on GCC for some reason. */
XXH_FORCE_INLINE XXH_CONSTF xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
{
    XXH_ASSERT(0 <= shift && shift < 64);
    return v64 ^ (v64 >> shift);
}

/*
 * This is a fast avalanche stage,
 * suitable when input bits are already partially mixed
 */
static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
{
    h64 = XXH_xorshift64(h64, 37);
    h64 *= PRIME_MX1;
    h64 = XXH_xorshift64(h64, 32);
    return h64;
}

/*
 * This is a stronger avalanche,
 * inspired by Pelle Evensen's rrmxmx
 * preferable when input has not been previously mixed
 */
static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
{
    /* this mix is inspired by Pelle Evensen's rrmxmx */
    h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
    h64 *= PRIME_MX2;
    h64 ^= (h64 >> 35) + len ;
    h64 *= PRIME_MX2;
    return XXH_xorshift64(h64, 28);
}


/* ==========================================
 * Short keys
 * ==========================================
 * One of the shortcomings of XXH32 and XXH64 was that their performance was
 * sub-optimal on short lengths. It used an iterative algorithm which strongly
 * favored lengths that were a multiple of 4 or 8.
 *
 * Instead of iterating over individual inputs, we use a set of single shot
 * functions which piece together a range of lengths and operate in constant time.
 *
 * Additionally, the number of multiplies has been significantly reduced. This
 * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
 *
 * Depending on the platform, this may or may not be faster than XXH32, but it
 * is almost guaranteed to be faster than XXH64.
 */

/*
 * At very short lengths, there isn't enough input to fully hide secrets, or use
 * the entire secret.
 *
 * There is also only a limited amount of mixing we can do before significantly
 * impacting performance.
 *
 * Therefore, we use different sections of the secret and always mix two secret
 * samples with an XOR. This should have no effect on performance on the
 * seedless or withSeed variants because everything _should_ be constant folded
 * by modern compilers.
 *
 * The XOR mixing hides individual parts of the secret and increases entropy.
 *
 * This adds an extra layer of strength for custom secrets.
 */
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(1 <= len && len <= 3);
    XXH_ASSERT(secret != NULL);
    /*
     * len = 1: combined = { input[0], 0x01, input[0], input[0] }
     * len = 2: combined = { input[1], 0x02, input[0], input[1] }
     * len = 3: combined = { input[2], 0x03, input[0], input[1] }
     */
    {   xxh_u8  const c1 = input[0];
        xxh_u8  const c2 = input[len >> 1];
        xxh_u8  const c3 = input[len - 1];
        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
                               | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
        return XXH64_avalanche(keyed);
    }
}

XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(4 <= len && len <= 8);
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
    {   xxh_u32 const input1 = XXH_readLE32(input);
        xxh_u32 const input2 = XXH_readLE32(input + len - 4);
        xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
        xxh_u64 const keyed = input64 ^ bitflip;
        return XXH3_rrmxmx(keyed, len);
    }
}

XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(9 <= len && len <= 16);
    {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
        xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
        xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
        xxh_u64 const acc = len
                          + XXH_swap64(input_lo) + input_hi
                          + XXH3_mul128_fold64(input_lo, input_hi);
        return XXH3_avalanche(acc);
    }
}

XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(len <= 16);
    {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
        if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
        if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
        return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
    }
}

/*
 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
 * multiplication by zero, affecting hashes of lengths 17 to 240.
 *
 * However, they are very unlikely.
 *
 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
 * unseeded non-cryptographic hashes, it does not attempt to defend itself
 * against specially crafted inputs, only random inputs.
 *
 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
 * cancelling out the secret is taken an arbitrary number of times (addressed
 * in XXH3_accumulate_512), this collision is very unlikely with random inputs
 * and/or proper seeding:
 *
 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
 * function that is only called up to 16 times per hash with up to 240 bytes of
 * input.
 *
 * This is not too bad for a non-cryptographic hash function, especially with
 * only 64 bit outputs.
 *
 * The 128-bit variant (which trades some speed for strength) is NOT affected
 * by this, although it is always a good idea to use a proper seed if you care
 * about strength.
 */
XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
                                     const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
{
#if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
  && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
  && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
    /*
     * UGLY HACK:
     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
     * slower code.
     *
     * By forcing seed64 into a register, we disrupt the cost model and
     * cause it to scalarize. See `XXH32_round()`
     *
     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
     * GCC 9.2, despite both emitting scalar code.
     *
     * GCC generates much better scalar code than Clang for the rest of XXH3,
     * which is why finding a more optimal codepath is an interest.
     */
    XXH_COMPILER_GUARD(seed64);
#endif
    {   xxh_u64 const input_lo = XXH_readLE64(input);
        xxh_u64 const input_hi = XXH_readLE64(input+8);
        return XXH3_mul128_fold64(
            input_lo ^ (XXH_readLE64(secret)   + seed64),
            input_hi ^ (XXH_readLE64(secret+8) - seed64)
        );
    }
}

/* For mid range keys, XXH3 uses a Mum-hash variant. */
XXH_FORCE_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
                     const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                     XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(16 < len && len <= 128);

    {   xxh_u64 acc = len * XXH_PRIME64_1;
#if XXH_SIZE_OPT >= 1
        /* Smaller and cleaner, but slightly slower. */
        unsigned int i = (unsigned int)(len - 1) / 32;
        do {
            acc += XXH3_mix16B(input+16 * i, secret+32*i, seed);
            acc += XXH3_mix16B(input+len-16*(i+1), secret+32*i+16, seed);
        } while (i-- != 0);
#else
        if (len > 32) {
            if (len > 64) {
                if (len > 96) {
                    acc += XXH3_mix16B(input+48, secret+96, seed);
                    acc += XXH3_mix16B(input+len-64, secret+112, seed);
                }
                acc += XXH3_mix16B(input+32, secret+64, seed);
                acc += XXH3_mix16B(input+len-48, secret+80, seed);
            }
            acc += XXH3_mix16B(input+16, secret+32, seed);
            acc += XXH3_mix16B(input+len-32, secret+48, seed);
        }
        acc += XXH3_mix16B(input+0, secret+0, seed);
        acc += XXH3_mix16B(input+len-16, secret+16, seed);
#endif
        return XXH3_avalanche(acc);
    }
}

#define XXH3_MIDSIZE_MAX 240

XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                      XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);

    #define XXH3_MIDSIZE_STARTOFFSET 3
    #define XXH3_MIDSIZE_LASTOFFSET  17

    {   xxh_u64 acc = len * XXH_PRIME64_1;
        xxh_u64 acc_end;
        unsigned int const nbRounds = (unsigned int)len / 16;
        unsigned int i;
        XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
        for (i=0; i<8; i++) {
            acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
        }
        /* last bytes */
        acc_end = XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
        XXH_ASSERT(nbRounds >= 8);
        acc = XXH3_avalanche(acc);
#if defined(__clang__)                                /* Clang */ \
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
        /*
         * UGLY HACK:
         * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
         * In everywhere else, it uses scalar code.
         *
         * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
         * would still be slower than UMAAL (see XXH_mult64to128).
         *
         * Unfortunately, Clang doesn't handle the long multiplies properly and
         * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
         * scalarized into an ugly mess of VMOV.32 instructions.
         *
         * This mess is difficult to avoid without turning autovectorization
         * off completely, but they are usually relatively minor and/or not
         * worth it to fix.
         *
         * This loop is the easiest to fix, as unlike XXH32, this pragma
         * _actually works_ because it is a loop vectorization instead of an
         * SLP vectorization.
         */
        #pragma clang loop vectorize(disable)
#endif
        for (i=8 ; i < nbRounds; i++) {
            /*
             * Prevents clang for unrolling the acc loop and interleaving with this one.
             */
            XXH_COMPILER_GUARD(acc);
            acc_end += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
        }
        return XXH3_avalanche(acc + acc_end);
    }
}


/* =======     Long Keys     ======= */

#define XXH_STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
#define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))

#ifdef XXH_OLD_NAMES
#  define STRIPE_LEN XXH_STRIPE_LEN
#  define ACC_NB XXH_ACC_NB
#endif

#ifndef XXH_PREFETCH_DIST
#  ifdef __clang__
#    define XXH_PREFETCH_DIST 320
#  else
#    if (XXH_VECTOR == XXH_AVX512)
#      define XXH_PREFETCH_DIST 512
#    else
#      define XXH_PREFETCH_DIST 384
#    endif
#  endif  /* __clang__ */
#endif  /* XXH_PREFETCH_DIST */

/*
 * These macros are to generate an XXH3_accumulate() function.
 * The two arguments select the name suffix and target attribute.
 *
 * The name of this symbol is XXH3_accumulate_<name>() and it calls
 * XXH3_accumulate_512_<name>().
 *
 * It may be useful to hand implement this function if the compiler fails to
 * optimize the inline function.
 */
#define XXH3_ACCUMULATE_TEMPLATE(name)                      \
void                                                        \
XXH3_accumulate_##name(xxh_u64* XXH_RESTRICT acc,           \
                       const xxh_u8* XXH_RESTRICT input,    \
                       const xxh_u8* XXH_RESTRICT secret,   \
                       size_t nbStripes)                    \
{                                                           \
    size_t n;                                               \
    for (n = 0; n < nbStripes; n++ ) {                      \
        const xxh_u8* const in = input + n*XXH_STRIPE_LEN;  \
        XXH_PREFETCH(in + XXH_PREFETCH_DIST);               \
        XXH3_accumulate_512_##name(                         \
                 acc,                                       \
                 in,                                        \
                 secret + n*XXH_SECRET_CONSUME_RATE);       \
    }                                                       \
}


XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
{
    if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
    XXH_memcpy(dst, &v64, sizeof(v64));
}

/* Several intrinsic functions below are supposed to accept __int64 as argument,
 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
 * However, several environments do not define __int64 type,
 * requiring a workaround.
 */
#if !defined (__VMS) \
  && (defined (__cplusplus) \
  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
    typedef int64_t xxh_i64;
#else
    /* the following type must have a width of 64-bit */
    typedef long long xxh_i64;
#endif


/*
 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
 *
 * It is a hardened version of UMAC, based off of FARSH's implementation.
 *
 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
 * implementations, and it is ridiculously fast.
 *
 * We harden it by mixing the original input to the accumulators as well as the product.
 *
 * This means that in the (relatively likely) case of a multiply by zero, the
 * original input is preserved.
 *
 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
 * cross-pollination, as otherwise the upper and lower halves would be
 * essentially independent.
 *
 * This doesn't matter on 64-bit hashes since they all get merged together in
 * the end, so we skip the extra step.
 *
 * Both XXH3_64bits and XXH3_128bits use this subroutine.
 */

#if (XXH_VECTOR == XXH_AVX512) \
     || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)

#ifndef XXH_TARGET_AVX512
# define XXH_TARGET_AVX512  /* disable attribute target */
#endif

XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
                     const void* XXH_RESTRICT input,
                     const void* XXH_RESTRICT secret)
{
    __m512i* const xacc = (__m512i *) acc;
    XXH_ASSERT((((size_t)acc) & 63) == 0);
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));

    {
        /* data_vec    = input[0]; */
        __m512i const data_vec    = _mm512_loadu_si512   (input);
        /* key_vec     = secret[0]; */
        __m512i const key_vec     = _mm512_loadu_si512   (secret);
        /* data_key    = data_vec ^ key_vec; */
        __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
        /* data_key_lo = data_key >> 32; */
        __m512i const data_key_lo = _mm512_srli_epi64 (data_key, 32);
        /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
        __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
        /* xacc[0] += swap(data_vec); */
        __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
        __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
        /* xacc[0] += product; */
        *xacc = _mm512_add_epi64(product, sum);
    }
}
XXH_FORCE_INLINE XXH_TARGET_AVX512 XXH3_ACCUMULATE_TEMPLATE(avx512)

/*
 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
 *
 * Multiplication isn't perfect, as explained by Google in HighwayHash:
 *
 *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
 *  // varying degrees. In descending order of goodness, bytes
 *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
 *  // As expected, the upper and lower bytes are much worse.
 *
 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
 *
 * Since our algorithm uses a pseudorandom secret to add some variance into the
 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
 *
 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
 * extraction.
 *
 * Both XXH3_64bits and XXH3_128bits use this subroutine.
 */

XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 63) == 0);
    XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
    {   __m512i* const xacc = (__m512i*) acc;
        const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);

        /* xacc[0] ^= (xacc[0] >> 47) */
        __m512i const acc_vec     = *xacc;
        __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
        /* xacc[0] ^= secret; */
        __m512i const key_vec     = _mm512_loadu_si512   (secret);
        __m512i const data_key    = _mm512_ternarylogic_epi32(key_vec, acc_vec, shifted, 0x96 /* key_vec ^ acc_vec ^ shifted */);

        /* xacc[0] *= XXH_PRIME32_1; */
        __m512i const data_key_hi = _mm512_srli_epi64 (data_key, 32);
        __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
        __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
        *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
    }
}

XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
    XXH_ASSERT(((size_t)customSecret & 63) == 0);
    (void)(&XXH_writeLE64);
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
        __m512i const seed_pos = _mm512_set1_epi64((xxh_i64)seed64);
        __m512i const seed     = _mm512_mask_sub_epi64(seed_pos, 0xAA, _mm512_set1_epi8(0), seed_pos);

        const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
              __m512i* const dest = (      __m512i*) customSecret;
        int i;
        XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
        XXH_ASSERT(((size_t)dest & 63) == 0);
        for (i=0; i < nbRounds; ++i) {
            dest[i] = _mm512_add_epi64(_mm512_load_si512(src + i), seed);
    }   }
}

#endif

#if (XXH_VECTOR == XXH_AVX2) \
    || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)

#ifndef XXH_TARGET_AVX2
# define XXH_TARGET_AVX2  /* disable attribute target */
#endif

XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
                    const void* XXH_RESTRICT input,
                    const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 31) == 0);
    {   __m256i* const xacc    =       (__m256i *) acc;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
        const         __m256i* const xinput  = (const __m256i *) input;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
        const         __m256i* const xsecret = (const __m256i *) secret;

        size_t i;
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
            /* data_vec    = xinput[i]; */
            __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
            /* key_vec     = xsecret[i]; */
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
            /* data_key    = data_vec ^ key_vec; */
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
            /* data_key_lo = data_key >> 32; */
            __m256i const data_key_lo = _mm256_srli_epi64 (data_key, 32);
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
            __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
            /* xacc[i] += swap(data_vec); */
            __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
            __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
            /* xacc[i] += product; */
            xacc[i] = _mm256_add_epi64(product, sum);
    }   }
}
XXH_FORCE_INLINE XXH_TARGET_AVX2 XXH3_ACCUMULATE_TEMPLATE(avx2)

XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 31) == 0);
    {   __m256i* const xacc = (__m256i*) acc;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
        const         __m256i* const xsecret = (const __m256i *) secret;
        const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);

        size_t i;
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
            /* xacc[i] ^= (xacc[i] >> 47) */
            __m256i const acc_vec     = xacc[i];
            __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
            __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
            /* xacc[i] ^= xsecret; */
            __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
            __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);

            /* xacc[i] *= XXH_PRIME32_1; */
            __m256i const data_key_hi = _mm256_srli_epi64 (data_key, 32);
            __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
            __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
        }
    }
}

XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
    XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
    (void)(&XXH_writeLE64);
    XXH_PREFETCH(customSecret);
    {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);

        const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
              __m256i*       dest = (      __m256i*) customSecret;

#       if defined(__GNUC__) || defined(__clang__)
        /*
         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
         *   - do not extract the secret from sse registers in the internal loop
         *   - use less common registers, and avoid pushing these reg into stack
         */
        XXH_COMPILER_GUARD(dest);
#       endif
        XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
        XXH_ASSERT(((size_t)dest & 31) == 0);

        /* GCC -O2 need unroll loop manually */
        dest[0] = _mm256_add_epi64(_mm256_load_si256(src+0), seed);
        dest[1] = _mm256_add_epi64(_mm256_load_si256(src+1), seed);
        dest[2] = _mm256_add_epi64(_mm256_load_si256(src+2), seed);
        dest[3] = _mm256_add_epi64(_mm256_load_si256(src+3), seed);
        dest[4] = _mm256_add_epi64(_mm256_load_si256(src+4), seed);
        dest[5] = _mm256_add_epi64(_mm256_load_si256(src+5), seed);
    }
}

#endif

/* x86dispatch always generates SSE2 */
#if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)

#ifndef XXH_TARGET_SSE2
# define XXH_TARGET_SSE2  /* disable attribute target */
#endif

XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
                    const void* XXH_RESTRICT input,
                    const void* XXH_RESTRICT secret)
{
    /* SSE2 is just a half-scale version of the AVX2 version. */
    XXH_ASSERT((((size_t)acc) & 15) == 0);
    {   __m128i* const xacc    =       (__m128i *) acc;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
        const         __m128i* const xinput  = (const __m128i *) input;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
        const         __m128i* const xsecret = (const __m128i *) secret;

        size_t i;
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
            /* data_vec    = xinput[i]; */
            __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
            /* key_vec     = xsecret[i]; */
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
            /* data_key    = data_vec ^ key_vec; */
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
            /* data_key_lo = data_key >> 32; */
            __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
            __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
            /* xacc[i] += swap(data_vec); */
            __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
            __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
            /* xacc[i] += product; */
            xacc[i] = _mm_add_epi64(product, sum);
    }   }
}
XXH_FORCE_INLINE XXH_TARGET_SSE2 XXH3_ACCUMULATE_TEMPLATE(sse2)

XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 15) == 0);
    {   __m128i* const xacc = (__m128i*) acc;
        /* Unaligned. This is mainly for pointer arithmetic, and because
         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
        const         __m128i* const xsecret = (const __m128i *) secret;
        const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);

        size_t i;
        for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
            /* xacc[i] ^= (xacc[i] >> 47) */
            __m128i const acc_vec     = xacc[i];
            __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
            __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
            /* xacc[i] ^= xsecret[i]; */
            __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
            __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);

            /* xacc[i] *= XXH_PRIME32_1; */
            __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
            __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
            __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
        }
    }
}

XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
    (void)(&XXH_writeLE64);
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);

#       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
        /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
        XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
        __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
#       else
        __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
#       endif
        int i;

        const void* const src16 = XXH3_kSecret;
        __m128i* dst16 = (__m128i*) customSecret;
#       if defined(__GNUC__) || defined(__clang__)
        /*
         * On GCC & Clang, marking 'dest' as modified will cause the compiler:
         *   - do not extract the secret from sse registers in the internal loop
         *   - use less common registers, and avoid pushing these reg into stack
         */
        XXH_COMPILER_GUARD(dst16);
#       endif
        XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
        XXH_ASSERT(((size_t)dst16 & 15) == 0);

        for (i=0; i < nbRounds; ++i) {
            dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
    }   }
}

#endif

#if (XXH_VECTOR == XXH_NEON)

/* forward declarations for the scalar routines */
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
                 void const* XXH_RESTRICT secret, size_t lane);

XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
                         void const* XXH_RESTRICT secret, size_t lane);

/*!
 * @internal
 * @brief The bulk processing loop for NEON and WASM SIMD128.
 *
 * The NEON code path is actually partially scalar when running on AArch64. This
 * is to optimize the pipelining and can have up to 15% speedup depending on the
 * CPU, and it also mitigates some GCC codegen issues.
 *
 * @see XXH3_NEON_LANES for configuring this and details about this optimization.
 *
 * NEON's 32-bit to 64-bit long multiply takes a half vector of 32-bit
 * integers instead of the other platforms which mask full 64-bit vectors,
 * so the setup is more complicated than just shifting right.
 *
 * Additionally, there is an optimization for 4 lanes at once noted below.
 *
 * Since, as stated, the most optimal amount of lanes for Cortexes is 6,
 * there needs to be *three* versions of the accumulate operation used
 * for the remaining 2 lanes.
 *
 * WASM's SIMD128 uses SIMDe's arm_neon.h polyfill because the intrinsics overlap
 * nearly perfectly.
 */

XXH_FORCE_INLINE void
XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
                    const void* XXH_RESTRICT input,
                    const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 15) == 0);
    XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
    {   /* GCC for darwin arm64 does not like aliasing here */
        xxh_aliasing_uint64x2_t* const xacc = (xxh_aliasing_uint64x2_t*) acc;
        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
        uint8_t const* xinput = (const uint8_t *) input;
        uint8_t const* xsecret  = (const uint8_t *) secret;

        size_t i;
#ifdef __wasm_simd128__
        /*
         * On WASM SIMD128, Clang emits direct address loads when XXH3_kSecret
         * is constant propagated, which results in it converting it to this
         * inside the loop:
         *
         *    a = v128.load(XXH3_kSecret +  0 + $secret_offset, offset = 0)
         *    b = v128.load(XXH3_kSecret + 16 + $secret_offset, offset = 0)
         *    ...
         *
         * This requires a full 32-bit address immediate (and therefore a 6 byte
         * instruction) as well as an add for each offset.
         *
         * Putting an asm guard prevents it from folding (at the cost of losing
         * the alignment hint), and uses the free offset in `v128.load` instead
         * of adding secret_offset each time which overall reduces code size by
         * about a kilobyte and improves performance.
         */
        XXH_COMPILER_GUARD(xsecret);
#endif
        /* Scalar lanes use the normal scalarRound routine */
        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
            XXH3_scalarRound(acc, input, secret, i);
        }
        i = 0;
        /* 4 NEON lanes at a time. */
        for (; i+1 < XXH3_NEON_LANES / 2; i+=2) {
            /* data_vec = xinput[i]; */
            uint64x2_t data_vec_1 = XXH_vld1q_u64(xinput  + (i * 16));
            uint64x2_t data_vec_2 = XXH_vld1q_u64(xinput  + ((i+1) * 16));
            /* key_vec  = xsecret[i];  */
            uint64x2_t key_vec_1  = XXH_vld1q_u64(xsecret + (i * 16));
            uint64x2_t key_vec_2  = XXH_vld1q_u64(xsecret + ((i+1) * 16));
            /* data_swap = swap(data_vec) */
            uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
            uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
            /* data_key = data_vec ^ key_vec; */
            uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
            uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);

            /*
             * If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
             * de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
             * get one vector with the low 32 bits of each lane, and one vector
             * with the high 32 bits of each lane.
             *
             * The intrinsic returns a double vector because the original ARMv7-a
             * instruction modified both arguments in place. AArch64 and SIMD128 emit
             * two instructions from this intrinsic.
             *
             *  [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
             *  [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
             */
            uint32x4x2_t unzipped = vuzpq_u32(
                vreinterpretq_u32_u64(data_key_1),
                vreinterpretq_u32_u64(data_key_2)
            );
            /* data_key_lo = data_key & 0xFFFFFFFF */
            uint32x4_t data_key_lo = unzipped.val[0];
            /* data_key_hi = data_key >> 32 */
            uint32x4_t data_key_hi = unzipped.val[1];
            /*
             * Then, we can split the vectors horizontally and multiply which, as for most
             * widening intrinsics, have a variant that works on both high half vectors
             * for free on AArch64. A similar instruction is available on SIMD128.
             *
             * sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
             */
            uint64x2_t sum_1 = XXH_vmlal_low_u32(data_swap_1, data_key_lo, data_key_hi);
            uint64x2_t sum_2 = XXH_vmlal_high_u32(data_swap_2, data_key_lo, data_key_hi);
            /*
             * Clang reorders
             *    a += b * c;     // umlal   swap.2d, dkl.2s, dkh.2s
             *    c += a;         // add     acc.2d, acc.2d, swap.2d
             * to
             *    c += a;         // add     acc.2d, acc.2d, swap.2d
             *    c += b * c;     // umlal   acc.2d, dkl.2s, dkh.2s
             *
             * While it would make sense in theory since the addition is faster,
             * for reasons likely related to umlal being limited to certain NEON
             * pipelines, this is worse. A compiler guard fixes this.
             */
            XXH_COMPILER_GUARD_CLANG_NEON(sum_1);
            XXH_COMPILER_GUARD_CLANG_NEON(sum_2);
            /* xacc[i] = acc_vec + sum; */
            xacc[i]   = vaddq_u64(xacc[i], sum_1);
            xacc[i+1] = vaddq_u64(xacc[i+1], sum_2);
        }
        /* Operate on the remaining NEON lanes 2 at a time. */
        for (; i < XXH3_NEON_LANES / 2; i++) {
            /* data_vec = xinput[i]; */
            uint64x2_t data_vec = XXH_vld1q_u64(xinput  + (i * 16));
            /* key_vec  = xsecret[i];  */
            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
            /* acc_vec_2 = swap(data_vec) */
            uint64x2_t data_swap = vextq_u64(data_vec, data_vec, 1);
            /* data_key = data_vec ^ key_vec; */
            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
            /* For two lanes, just use VMOVN and VSHRN. */
            /* data_key_lo = data_key & 0xFFFFFFFF; */
            uint32x2_t data_key_lo = vmovn_u64(data_key);
            /* data_key_hi = data_key >> 32; */
            uint32x2_t data_key_hi = vshrn_n_u64(data_key, 32);
            /* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi; */
            uint64x2_t sum = vmlal_u32(data_swap, data_key_lo, data_key_hi);
            /* Same Clang workaround as before */
            XXH_COMPILER_GUARD_CLANG_NEON(sum);
            /* xacc[i] = acc_vec + sum; */
            xacc[i] = vaddq_u64 (xacc[i], sum);
        }
    }
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(neon)

XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 15) == 0);

    {   xxh_aliasing_uint64x2_t* xacc       = (xxh_aliasing_uint64x2_t*) acc;
        uint8_t const* xsecret = (uint8_t const*) secret;

        size_t i;
        /* WASM uses operator overloads and doesn't need these. */
#ifndef __wasm_simd128__
        /* { prime32_1, prime32_1 } */
        uint32x2_t const kPrimeLo = vdup_n_u32(XXH_PRIME32_1);
        /* { 0, prime32_1, 0, prime32_1 } */
        uint32x4_t const kPrimeHi = vreinterpretq_u32_u64(vdupq_n_u64((xxh_u64)XXH_PRIME32_1 << 32));
#endif

        /* AArch64 uses both scalar and neon at the same time */
        for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
            XXH3_scalarScrambleRound(acc, secret, i);
        }
        for (i=0; i < XXH3_NEON_LANES / 2; i++) {
            /* xacc[i] ^= (xacc[i] >> 47); */
            uint64x2_t acc_vec  = xacc[i];
            uint64x2_t shifted  = vshrq_n_u64(acc_vec, 47);
            uint64x2_t data_vec = veorq_u64(acc_vec, shifted);

            /* xacc[i] ^= xsecret[i]; */
            uint64x2_t key_vec  = XXH_vld1q_u64(xsecret + (i * 16));
            uint64x2_t data_key = veorq_u64(data_vec, key_vec);
            /* xacc[i] *= XXH_PRIME32_1 */
#ifdef __wasm_simd128__
            /* SIMD128 has multiply by u64x2, use it instead of expanding and scalarizing */
            xacc[i] = data_key * XXH_PRIME32_1;
#else
            /*
             * Expanded version with portable NEON intrinsics
             *
             *    lo(x) * lo(y) + (hi(x) * lo(y) << 32)
             *
             * prod_hi = hi(data_key) * lo(prime) << 32
             *
             * Since we only need 32 bits of this multiply a trick can be used, reinterpreting the vector
             * as a uint32x4_t and multiplying by { 0, prime, 0, prime } to cancel out the unwanted bits
             * and avoid the shift.
             */
            uint32x4_t prod_hi = vmulq_u32 (vreinterpretq_u32_u64(data_key), kPrimeHi);
            /* Extract low bits for vmlal_u32  */
            uint32x2_t data_key_lo = vmovn_u64(data_key);
            /* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
            xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
#endif
        }
    }
}
#endif

#if (XXH_VECTOR == XXH_VSX)

XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
                    const void* XXH_RESTRICT input,
                    const void* XXH_RESTRICT secret)
{
    /* presumed aligned */
    xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
    xxh_u8 const* const xinput   = (xxh_u8 const*) input;   /* no alignment restriction */
    xxh_u8 const* const xsecret  = (xxh_u8 const*) secret;    /* no alignment restriction */
    xxh_u64x2 const v32 = { 32, 32 };
    size_t i;
    for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
        /* data_vec = xinput[i]; */
        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + 16*i);
        /* key_vec = xsecret[i]; */
        xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
        xxh_u64x2 const data_key = data_vec ^ key_vec;
        /* shuffled = (data_key << 32) | (data_key >> 32); */
        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
        xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
        /* acc_vec = xacc[i]; */
        xxh_u64x2 acc_vec        = xacc[i];
        acc_vec += product;

        /* swap high and low halves */
#ifdef __s390x__
        acc_vec += vec_permi(data_vec, data_vec, 2);
#else
        acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
#endif
        xacc[i] = acc_vec;
    }
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(vsx)

XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    XXH_ASSERT((((size_t)acc) & 15) == 0);

    {   xxh_aliasing_u64x2* const xacc = (xxh_aliasing_u64x2*) acc;
        const xxh_u8* const xsecret = (const xxh_u8*) secret;
        /* constants */
        xxh_u64x2 const v32  = { 32, 32 };
        xxh_u64x2 const v47 = { 47, 47 };
        xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
        size_t i;
        for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
            /* xacc[i] ^= (xacc[i] >> 47); */
            xxh_u64x2 const acc_vec  = xacc[i];
            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);

            /* xacc[i] ^= xsecret[i]; */
            xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + 16*i);
            xxh_u64x2 const data_key = data_vec ^ key_vec;

            /* xacc[i] *= XXH_PRIME32_1 */
            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
            xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
            xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
            xacc[i] = prod_odd + (prod_even << v32);
    }   }
}

#endif

#if (XXH_VECTOR == XXH_SVE)

XXH_FORCE_INLINE void
XXH3_accumulate_512_sve( void* XXH_RESTRICT acc,
                   const void* XXH_RESTRICT input,
                   const void* XXH_RESTRICT secret)
{
    uint64_t *xacc = (uint64_t *)acc;
    const uint64_t *xinput = (const uint64_t *)(const void *)input;
    const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
    svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
    uint64_t element_count = svcntd();
    if (element_count >= 8) {
        svbool_t mask = svptrue_pat_b64(SV_VL8);
        svuint64_t vacc = svld1_u64(mask, xacc);
        ACCRND(vacc, 0);
        svst1_u64(mask, xacc, vacc);
    } else if (element_count == 2) {   /* sve128 */
        svbool_t mask = svptrue_pat_b64(SV_VL2);
        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
        svuint64_t acc1 = svld1_u64(mask, xacc + 2);
        svuint64_t acc2 = svld1_u64(mask, xacc + 4);
        svuint64_t acc3 = svld1_u64(mask, xacc + 6);
        ACCRND(acc0, 0);
        ACCRND(acc1, 2);
        ACCRND(acc2, 4);
        ACCRND(acc3, 6);
        svst1_u64(mask, xacc + 0, acc0);
        svst1_u64(mask, xacc + 2, acc1);
        svst1_u64(mask, xacc + 4, acc2);
        svst1_u64(mask, xacc + 6, acc3);
    } else {
        svbool_t mask = svptrue_pat_b64(SV_VL4);
        svuint64_t acc0 = svld1_u64(mask, xacc + 0);
        svuint64_t acc1 = svld1_u64(mask, xacc + 4);
        ACCRND(acc0, 0);
        ACCRND(acc1, 4);
        svst1_u64(mask, xacc + 0, acc0);
        svst1_u64(mask, xacc + 4, acc1);
    }
}

XXH_FORCE_INLINE void
XXH3_accumulate_sve(xxh_u64* XXH_RESTRICT acc,
               const xxh_u8* XXH_RESTRICT input,
               const xxh_u8* XXH_RESTRICT secret,
               size_t nbStripes)
{
    if (nbStripes != 0) {
        uint64_t *xacc = (uint64_t *)acc;
        const uint64_t *xinput = (const uint64_t *)(const void *)input;
        const uint64_t *xsecret = (const uint64_t *)(const void *)secret;
        svuint64_t kSwap = sveor_n_u64_z(svptrue_b64(), svindex_u64(0, 1), 1);
        uint64_t element_count = svcntd();
        if (element_count >= 8) {
            svbool_t mask = svptrue_pat_b64(SV_VL8);
            svuint64_t vacc = svld1_u64(mask, xacc + 0);
            do {
                /* svprfd(svbool_t, void *, enum svfprop); */
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
                ACCRND(vacc, 0);
                xinput += 8;
                xsecret += 1;
                nbStripes--;
           } while (nbStripes != 0);

           svst1_u64(mask, xacc + 0, vacc);
        } else if (element_count == 2) { /* sve128 */
            svbool_t mask = svptrue_pat_b64(SV_VL2);
            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
            svuint64_t acc1 = svld1_u64(mask, xacc + 2);
            svuint64_t acc2 = svld1_u64(mask, xacc + 4);
            svuint64_t acc3 = svld1_u64(mask, xacc + 6);
            do {
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
                ACCRND(acc0, 0);
                ACCRND(acc1, 2);
                ACCRND(acc2, 4);
                ACCRND(acc3, 6);
                xinput += 8;
                xsecret += 1;
                nbStripes--;
           } while (nbStripes != 0);

           svst1_u64(mask, xacc + 0, acc0);
           svst1_u64(mask, xacc + 2, acc1);
           svst1_u64(mask, xacc + 4, acc2);
           svst1_u64(mask, xacc + 6, acc3);
        } else {
            svbool_t mask = svptrue_pat_b64(SV_VL4);
            svuint64_t acc0 = svld1_u64(mask, xacc + 0);
            svuint64_t acc1 = svld1_u64(mask, xacc + 4);
            do {
                svprfd(mask, xinput + 128, SV_PLDL1STRM);
                ACCRND(acc0, 0);
                ACCRND(acc1, 4);
                xinput += 8;
                xsecret += 1;
                nbStripes--;
           } while (nbStripes != 0);

           svst1_u64(mask, xacc + 0, acc0);
           svst1_u64(mask, xacc + 4, acc1);
       }
    }
}

#endif

/* scalar variants - universal */

#if defined(__aarch64__) && (defined(__GNUC__) || defined(__clang__))
/*
 * In XXH3_scalarRound(), GCC and Clang have a similar codegen issue, where they
 * emit an excess mask and a full 64-bit multiply-add (MADD X-form).
 *
 * While this might not seem like much, as AArch64 is a 64-bit architecture, only
 * big Cortex designs have a full 64-bit multiplier.
 *
 * On the little cores, the smaller 32-bit multiplier is used, and full 64-bit
 * multiplies expand to 2-3 multiplies in microcode. This has a major penalty
 * of up to 4 latency cycles and 2 stall cycles in the multiply pipeline.
 *
 * Thankfully, AArch64 still provides the 32-bit long multiply-add (UMADDL) which does
 * not have this penalty and does the mask automatically.
 */
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
    xxh_u64 ret;
    /* note: %x = 64-bit register, %w = 32-bit register */
    __asm__("umaddl %x0, %w1, %w2, %x3" : "=r" (ret) : "r" (lhs), "r" (rhs), "r" (acc));
    return ret;
}
#else
XXH_FORCE_INLINE xxh_u64
XXH_mult32to64_add64(xxh_u64 lhs, xxh_u64 rhs, xxh_u64 acc)
{
    return XXH_mult32to64((xxh_u32)lhs, (xxh_u32)rhs) + acc;
}
#endif

/*!
 * @internal
 * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
 *
 * This is extracted to its own function because the NEON path uses a combination
 * of NEON and scalar.
 */
XXH_FORCE_INLINE void
XXH3_scalarRound(void* XXH_RESTRICT acc,
                 void const* XXH_RESTRICT input,
                 void const* XXH_RESTRICT secret,
                 size_t lane)
{
    xxh_u64* xacc = (xxh_u64*) acc;
    xxh_u8 const* xinput  = (xxh_u8 const*) input;
    xxh_u8 const* xsecret = (xxh_u8 const*) secret;
    XXH_ASSERT(lane < XXH_ACC_NB);
    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
    {
        xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
        xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
        xacc[lane] = XXH_mult32to64_add64(data_key /* & 0xFFFFFFFF */, data_key >> 32, xacc[lane]);
    }
}

/*!
 * @internal
 * @brief Processes a 64 byte block of data using the scalar path.
 */
XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
                     const void* XXH_RESTRICT input,
                     const void* XXH_RESTRICT secret)
{
    size_t i;
    /* ARM GCC refuses to unroll this loop, resulting in a 24% slowdown on ARMv6. */
#if defined(__GNUC__) && !defined(__clang__) \
  && (defined(__arm__) || defined(__thumb2__)) \
  && defined(__ARM_FEATURE_UNALIGNED) /* no unaligned access just wastes bytes */ \
  && XXH_SIZE_OPT <= 0
#  pragma GCC unroll 8
#endif
    for (i=0; i < XXH_ACC_NB; i++) {
        XXH3_scalarRound(acc, input, secret, i);
    }
}
XXH_FORCE_INLINE XXH3_ACCUMULATE_TEMPLATE(scalar)

/*!
 * @internal
 * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
 *
 * This is extracted to its own function because the NEON path uses a combination
 * of NEON and scalar.
 */
XXH_FORCE_INLINE void
XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
                         void const* XXH_RESTRICT secret,
                         size_t lane)
{
    xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
    const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
    XXH_ASSERT(lane < XXH_ACC_NB);
    {
        xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
        xxh_u64 acc64 = xacc[lane];
        acc64 = XXH_xorshift64(acc64, 47);
        acc64 ^= key64;
        acc64 *= XXH_PRIME32_1;
        xacc[lane] = acc64;
    }
}

/*!
 * @internal
 * @brief Scrambles the accumulators after a large chunk has been read
 */
XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
{
    size_t i;
    for (i=0; i < XXH_ACC_NB; i++) {
        XXH3_scalarScrambleRound(acc, secret, i);
    }
}

XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
{
    /*
     * We need a separate pointer for the hack below,
     * which requires a non-const pointer.
     * Any decent compiler will optimize this out otherwise.
     */
    const xxh_u8* kSecretPtr = XXH3_kSecret;
    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);

#if defined(__GNUC__) && defined(__aarch64__)
    /*
     * UGLY HACK:
     * GCC and Clang generate a bunch of MOV/MOVK pairs for aarch64, and they are
     * placed sequentially, in order, at the top of the unrolled loop.
     *
     * While MOVK is great for generating constants (2 cycles for a 64-bit
     * constant compared to 4 cycles for LDR), it fights for bandwidth with
     * the arithmetic instructions.
     *
     *   I   L   S
     * MOVK
     * MOVK
     * MOVK
     * MOVK
     * ADD
     * SUB      STR
     *          STR
     * By forcing loads from memory (as the asm line causes the compiler to assume
     * that XXH3_kSecretPtr has been changed), the pipelines are used more
     * efficiently:
     *   I   L   S
     *      LDR
     *  ADD LDR
     *  SUB     STR
     *          STR
     *
     * See XXH3_NEON_LANES for details on the pipsline.
     *
     * XXH3_64bits_withSeed, len == 256, Snapdragon 835
     *   without hack: 2654.4 MB/s
     *   with hack:    3202.9 MB/s
     */
    XXH_COMPILER_GUARD(kSecretPtr);
#endif
    {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
        int i;
        for (i=0; i < nbRounds; i++) {
            /*
             * The asm hack causes the compiler to assume that kSecretPtr aliases with
             * customSecret, and on aarch64, this prevented LDP from merging two
             * loads together for free. Putting the loads together before the stores
             * properly generates LDP.
             */
            xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
            xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
            XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
            XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
    }   }
}


typedef void (*XXH3_f_accumulate)(xxh_u64* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, const xxh_u8* XXH_RESTRICT, size_t);
typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);


#if (XXH_VECTOR == XXH_AVX512)

#define XXH3_accumulate_512 XXH3_accumulate_512_avx512
#define XXH3_accumulate     XXH3_accumulate_avx512
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx512

#elif (XXH_VECTOR == XXH_AVX2)

#define XXH3_accumulate_512 XXH3_accumulate_512_avx2
#define XXH3_accumulate     XXH3_accumulate_avx2
#define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
#define XXH3_initCustomSecret XXH3_initCustomSecret_avx2

#elif (XXH_VECTOR == XXH_SSE2)

#define XXH3_accumulate_512 XXH3_accumulate_512_sse2
#define XXH3_accumulate     XXH3_accumulate_sse2
#define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
#define XXH3_initCustomSecret XXH3_initCustomSecret_sse2

#elif (XXH_VECTOR == XXH_NEON)

#define XXH3_accumulate_512 XXH3_accumulate_512_neon
#define XXH3_accumulate     XXH3_accumulate_neon
#define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar

#elif (XXH_VECTOR == XXH_VSX)

#define XXH3_accumulate_512 XXH3_accumulate_512_vsx
#define XXH3_accumulate     XXH3_accumulate_vsx
#define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar

#elif (XXH_VECTOR == XXH_SVE)
#define XXH3_accumulate_512 XXH3_accumulate_512_sve
#define XXH3_accumulate     XXH3_accumulate_sve
#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar

#else /* scalar */

#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
#define XXH3_accumulate     XXH3_accumulate_scalar
#define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
#define XXH3_initCustomSecret XXH3_initCustomSecret_scalar

#endif

#if XXH_SIZE_OPT >= 1 /* don't do SIMD for initialization */
#  undef XXH3_initCustomSecret
#  define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
#endif

XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
                      const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                            XXH3_f_accumulate f_acc,
                            XXH3_f_scrambleAcc f_scramble)
{
    size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
    size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
    size_t const nb_blocks = (len - 1) / block_len;

    size_t n;

    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);

    for (n = 0; n < nb_blocks; n++) {
        f_acc(acc, input + n*block_len, secret, nbStripesPerBlock);
        f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
    }

    /* last partial block */
    XXH_ASSERT(len > XXH_STRIPE_LEN);
    {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
        f_acc(acc, input + nb_blocks*block_len, secret, nbStripes);

        /* last stripe */
        {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
            XXH3_accumulate_512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
    }   }
}

XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
{
    return XXH3_mul128_fold64(
               acc[0] ^ XXH_readLE64(secret),
               acc[1] ^ XXH_readLE64(secret+8) );
}

static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
{
    xxh_u64 result64 = start;
    size_t i = 0;

    for (i = 0; i < 4; i++) {
        result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
#if defined(__clang__)                                /* Clang */ \
    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
        /*
         * UGLY HACK:
         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
         * XXH3_64bits, len == 256, Snapdragon 835:
         *   without hack: 2063.7 MB/s
         *   with hack:    2560.7 MB/s
         */
        XXH_COMPILER_GUARD(result64);
#endif
    }

    return XXH3_avalanche(result64);
}

#define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
                        XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }

XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
                           const void* XXH_RESTRICT secret, size_t secretSize,
                           XXH3_f_accumulate f_acc,
                           XXH3_f_scrambleAcc f_scramble)
{
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;

    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc, f_scramble);

    /* converge into final hash */
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
    /* do not align on 8, so that the secret is different from the accumulator */
#define XXH_SECRET_MERGEACCS_START 11
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
}

/*
 * It's important for performance to transmit secret's size (when it's static)
 * so that the compiler can properly optimize the vectorized loop.
 * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
 * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
 * breaks -Og, this is XXH_NO_INLINE.
 */
XXH3_WITH_SECRET_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
                             XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
    (void)seed64;
    return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate, XXH3_scrambleAcc);
}

/*
 * It's preferable for performance that XXH3_hashLong is not inlined,
 * as it results in a smaller function for small data, easier to the instruction cache.
 * Note that inside this no_inline function, we do inline the internal loop,
 * and provide a statically defined secret size to allow optimization of vector loop.
 */
XXH_NO_INLINE XXH_PUREF XXH64_hash_t
XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
                          XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
    (void)seed64; (void)secret; (void)secretLen;
    return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate, XXH3_scrambleAcc);
}

/*
 * XXH3_hashLong_64b_withSeed():
 * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
 * and then use this key for long mode hashing.
 *
 * This operation is decently fast but nonetheless costs a little bit of time.
 * Try to avoid it whenever possible (typically when seed==0).
 *
 * It's important for performance that XXH3_hashLong is not inlined. Not sure
 * why (uop cache maybe?), but the difference is large and easily measurable.
 */
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
                                    XXH64_hash_t seed,
                                    XXH3_f_accumulate f_acc,
                                    XXH3_f_scrambleAcc f_scramble,
                                    XXH3_f_initCustomSecret f_initSec)
{
#if XXH_SIZE_OPT <= 0
    if (seed == 0)
        return XXH3_hashLong_64b_internal(input, len,
                                          XXH3_kSecret, sizeof(XXH3_kSecret),
                                          f_acc, f_scramble);
#endif
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
        f_initSec(secret, seed);
        return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
                                          f_acc, f_scramble);
    }
}

/*
 * It's important for performance that XXH3_hashLong is not inlined.
 */
XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void* XXH_RESTRICT input, size_t len,
                           XXH64_hash_t seed, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
{
    (void)secret; (void)secretLen;
    return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}


typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
                                          XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);

XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
                     XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
                     XXH3_hashLong64_f f_hashLong)
{
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
    /*
     * If an action is to be taken if `secretLen` condition is not respected,
     * it should be done here.
     * For now, it's a contract pre-condition.
     * Adding a check and a branch here would cost performance at every hash.
     * Also, note that function signature doesn't offer room to return an error.
     */
    if (len <= 16)
        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
    if (len <= 128)
        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    if (len <= XXH3_MIDSIZE_MAX)
        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
}


/* ===   Public entry point   === */

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(XXH_NOESCAPE const void* input, size_t length)
{
    return XXH3_64bits_internal(input, length, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize)
{
    return XXH3_64bits_internal(input, length, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(XXH_NOESCAPE const void* input, size_t length, XXH64_hash_t seed)
{
    return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
}

XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t length, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
    if (length <= XXH3_MIDSIZE_MAX)
        return XXH3_64bits_internal(input, length, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
    return XXH3_hashLong_64b_withSecret(input, length, seed, (const xxh_u8*)secret, secretSize);
}


/* ===   XXH3 streaming   === */
#ifndef XXH_NO_STREAM
/*
 * Malloc's a pointer that is always aligned to align.
 *
 * This must be freed with `XXH_alignedFree()`.
 *
 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
 *
 * This underalignment previously caused a rather obvious crash which went
 * completely unnoticed due to XXH3_createState() not actually being tested.
 * Credit to RedSpah for noticing this bug.
 *
 * The alignment is done manually: Functions like posix_memalign or _mm_malloc
 * are avoided: To maintain portability, we would have to write a fallback
 * like this anyways, and besides, testing for the existence of library
 * functions without relying on external build tools is impossible.
 *
 * The method is simple: Overallocate, manually align, and store the offset
 * to the original behind the returned pointer.
 *
 * Align must be a power of 2 and 8 <= align <= 128.
 */
static XXH_MALLOCF void* XXH_alignedMalloc(size_t s, size_t align)
{
    XXH_ASSERT(align <= 128 && align >= 8); /* range check */
    XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
    {   /* Overallocate to make room for manual realignment and an offset byte */
        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
        if (base != NULL) {
            /*
             * Get the offset needed to align this pointer.
             *
             * Even if the returned pointer is aligned, there will always be
             * at least one byte to store the offset to the original pointer.
             */
            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
            /* Add the offset for the now-aligned pointer */
            xxh_u8* ptr = base + offset;

            XXH_ASSERT((size_t)ptr % align == 0);

            /* Store the offset immediately before the returned pointer. */
            ptr[-1] = (xxh_u8)offset;
            return ptr;
        }
        return NULL;
    }
}
/*
 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
 */
static void XXH_alignedFree(void* p)
{
    if (p != NULL) {
        xxh_u8* ptr = (xxh_u8*)p;
        /* Get the offset byte we added in XXH_malloc. */
        xxh_u8 offset = ptr[-1];
        /* Free the original malloc'd pointer */
        xxh_u8* base = ptr - offset;
        XXH_free(base);
    }
}
/*! @ingroup XXH3_family */
/*!
 * @brief Allocate an @ref XXH3_state_t.
 *
 * Must be freed with XXH3_freeState().
 * @return An allocated XXH3_state_t on success, `NULL` on failure.
 */
XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
{
    XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
    if (state==NULL) return NULL;
    XXH3_INITSTATE(state);
    return state;
}

/*! @ingroup XXH3_family */
/*!
 * @brief Frees an @ref XXH3_state_t.
 *
 * Must be allocated with XXH3_createState().
 * @param statePtr A pointer to an @ref XXH3_state_t allocated with @ref XXH3_createState().
 * @return XXH_OK.
 */
XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
{
    XXH_alignedFree(statePtr);
    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_copyState(XXH_NOESCAPE XXH3_state_t* dst_state, XXH_NOESCAPE const XXH3_state_t* src_state)
{
    XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
}

static void
XXH3_reset_internal(XXH3_state_t* statePtr,
                    XXH64_hash_t seed,
                    const void* secret, size_t secretSize)
{
    size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
    size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
    XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
    XXH_ASSERT(statePtr != NULL);
    /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
    memset((char*)statePtr + initStart, 0, initLength);
    statePtr->acc[0] = XXH_PRIME32_3;
    statePtr->acc[1] = XXH_PRIME64_1;
    statePtr->acc[2] = XXH_PRIME64_2;
    statePtr->acc[3] = XXH_PRIME64_3;
    statePtr->acc[4] = XXH_PRIME64_4;
    statePtr->acc[5] = XXH_PRIME32_2;
    statePtr->acc[6] = XXH_PRIME64_5;
    statePtr->acc[7] = XXH_PRIME32_1;
    statePtr->seed = seed;
    statePtr->useSeed = (seed != 0);
    statePtr->extSecret = (const unsigned char*)secret;
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
    statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
    if (statePtr == NULL) return XXH_ERROR;
    XXH3_reset_internal(statePtr, 0, secret, secretSize);
    if (secret == NULL) return XXH_ERROR;
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
    if (statePtr == NULL) return XXH_ERROR;
    if (seed==0) return XXH3_64bits_reset(statePtr);
    if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
        XXH3_initCustomSecret(statePtr->customSecret, seed);
    XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed64)
{
    if (statePtr == NULL) return XXH_ERROR;
    if (secret == NULL) return XXH_ERROR;
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
    XXH3_reset_internal(statePtr, seed64, secret, secretSize);
    statePtr->useSeed = 1; /* always, even if seed64==0 */
    return XXH_OK;
}

/*!
 * @internal
 * @brief Processes a large input for XXH3_update() and XXH3_digest_long().
 *
 * Unlike XXH3_hashLong_internal_loop(), this can process data that overlaps a block.
 *
 * @param acc                Pointer to the 8 accumulator lanes
 * @param nbStripesSoFarPtr  In/out pointer to the number of leftover stripes in the block*
 * @param nbStripesPerBlock  Number of stripes in a block
 * @param input              Input pointer
 * @param nbStripes          Number of stripes to process
 * @param secret             Secret pointer
 * @param secretLimit        Offset of the last block in @p secret
 * @param f_acc              Pointer to an XXH3_accumulate implementation
 * @param f_scramble         Pointer to an XXH3_scrambleAcc implementation
 * @return                   Pointer past the end of @p input after processing
 */
XXH_FORCE_INLINE const xxh_u8 *
XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
                    size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
                    const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
                    const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
                    XXH3_f_accumulate f_acc,
                    XXH3_f_scrambleAcc f_scramble)
{
    const xxh_u8* initialSecret = secret + *nbStripesSoFarPtr * XXH_SECRET_CONSUME_RATE;
    /* Process full blocks */
    if (nbStripes >= (nbStripesPerBlock - *nbStripesSoFarPtr)) {
        /* Process the initial partial block... */
        size_t nbStripesThisIter = nbStripesPerBlock - *nbStripesSoFarPtr;

        do {
            /* Accumulate and scramble */
            f_acc(acc, input, initialSecret, nbStripesThisIter);
            f_scramble(acc, secret + secretLimit);
            input += nbStripesThisIter * XXH_STRIPE_LEN;
            nbStripes -= nbStripesThisIter;
            /* Then continue the loop with the full block size */
            nbStripesThisIter = nbStripesPerBlock;
            initialSecret = secret;
        } while (nbStripes >= nbStripesPerBlock);
        *nbStripesSoFarPtr = 0;
    }
    /* Process a partial block */
    if (nbStripes > 0) {
        f_acc(acc, input, initialSecret, nbStripes);
        input += nbStripes * XXH_STRIPE_LEN;
        *nbStripesSoFarPtr += nbStripes;
    }
    /* Return end pointer */
    return input;
}

#ifndef XXH3_STREAM_USE_STACK
# if XXH_SIZE_OPT <= 0 && !defined(__clang__) /* clang doesn't need additional stack space */
#   define XXH3_STREAM_USE_STACK 1
# endif
#endif
/*
 * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
 */
XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
            const xxh_u8* XXH_RESTRICT input, size_t len,
            XXH3_f_accumulate f_acc,
            XXH3_f_scrambleAcc f_scramble)
{
    if (input==NULL) {
        XXH_ASSERT(len == 0);
        return XXH_OK;
    }

    XXH_ASSERT(state != NULL);
    {   const xxh_u8* const bEnd = input + len;
        const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
        /* For some reason, gcc and MSVC seem to suffer greatly
         * when operating accumulators directly into state.
         * Operating into stack space seems to enable proper optimization.
         * clang, on the other hand, doesn't seem to need this trick */
        XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8];
        XXH_memcpy(acc, state->acc, sizeof(acc));
#else
        xxh_u64* XXH_RESTRICT const acc = state->acc;
#endif
        state->totalLen += len;
        XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);

        /* small input : just fill in tmp buffer */
        if (len <= XXH3_INTERNALBUFFER_SIZE - state->bufferedSize) {
            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
            state->bufferedSize += (XXH32_hash_t)len;
            return XXH_OK;
        }

        /* total input is now > XXH3_INTERNALBUFFER_SIZE */
        #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */

        /*
         * Internal buffer is partially filled (always, except at beginning)
         * Complete it, then consume it.
         */
        if (state->bufferedSize) {
            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
            input += loadSize;
            XXH3_consumeStripes(acc,
                               &state->nbStripesSoFar, state->nbStripesPerBlock,
                                state->buffer, XXH3_INTERNALBUFFER_STRIPES,
                                secret, state->secretLimit,
                                f_acc, f_scramble);
            state->bufferedSize = 0;
        }
        XXH_ASSERT(input < bEnd);
        if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
            size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
            input = XXH3_consumeStripes(acc,
                                       &state->nbStripesSoFar, state->nbStripesPerBlock,
                                       input, nbStripes,
                                       secret, state->secretLimit,
                                       f_acc, f_scramble);
            XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);

        }
        /* Some remaining input (always) : buffer it */
        XXH_ASSERT(input < bEnd);
        XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
        XXH_ASSERT(state->bufferedSize == 0);
        XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
        state->bufferedSize = (XXH32_hash_t)(bEnd-input);
#if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
        /* save stack accumulators into state */
        XXH_memcpy(state->acc, acc, sizeof(acc));
#endif
    }

    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
    return XXH3_update(state, (const xxh_u8*)input, len,
                       XXH3_accumulate, XXH3_scrambleAcc);
}


XXH_FORCE_INLINE void
XXH3_digest_long (XXH64_hash_t* acc,
                  const XXH3_state_t* state,
                  const unsigned char* secret)
{
    xxh_u8 lastStripe[XXH_STRIPE_LEN];
    const xxh_u8* lastStripePtr;

    /*
     * Digest on a local copy. This way, the state remains unaltered, and it can
     * continue ingesting more input afterwards.
     */
    XXH_memcpy(acc, state->acc, sizeof(state->acc));
    if (state->bufferedSize >= XXH_STRIPE_LEN) {
        /* Consume remaining stripes then point to remaining data in buffer */
        size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
        size_t nbStripesSoFar = state->nbStripesSoFar;
        XXH3_consumeStripes(acc,
                           &nbStripesSoFar, state->nbStripesPerBlock,
                            state->buffer, nbStripes,
                            secret, state->secretLimit,
                            XXH3_accumulate, XXH3_scrambleAcc);
        lastStripePtr = state->buffer + state->bufferedSize - XXH_STRIPE_LEN;
    } else {  /* bufferedSize < XXH_STRIPE_LEN */
        /* Copy to temp buffer */
        size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
        XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
        XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
        XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
        lastStripePtr = lastStripe;
    }
    /* Last stripe */
    XXH3_accumulate_512(acc,
                        lastStripePtr,
                        secret + state->secretLimit - XXH_SECRET_LASTACC_START);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
        XXH3_digest_long(acc, state, secret);
        return XXH3_mergeAccs(acc,
                              secret + XXH_SECRET_MERGEACCS_START,
                              (xxh_u64)state->totalLen * XXH_PRIME64_1);
    }
    /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
    if (state->useSeed)
        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
                                  secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */


/* ==========================================
 * XXH3 128 bits (a.k.a XXH128)
 * ==========================================
 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
 * even without counting the significantly larger output size.
 *
 * For example, extra steps are taken to avoid the seed-dependent collisions
 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
 *
 * This strength naturally comes at the cost of some speed, especially on short
 * lengths. Note that longer hashes are about as fast as the 64-bit version
 * due to it using only a slight modification of the 64-bit loop.
 *
 * XXH128 is also more oriented towards 64-bit machines. It is still extremely
 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
 */

XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    /* A doubled version of 1to3_64b with different constants. */
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(1 <= len && len <= 3);
    XXH_ASSERT(secret != NULL);
    /*
     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
     */
    {   xxh_u8 const c1 = input[0];
        xxh_u8 const c2 = input[len >> 1];
        xxh_u8 const c3 = input[len - 1];
        xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
                                | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
        xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
        XXH128_hash_t h128;
        h128.low64  = XXH64_avalanche(keyed_lo);
        h128.high64 = XXH64_avalanche(keyed_hi);
        return h128;
    }
}

XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(4 <= len && len <= 8);
    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
    {   xxh_u32 const input_lo = XXH_readLE32(input);
        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
        xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
        xxh_u64 const keyed = input_64 ^ bitflip;

        /* Shift len to the left to ensure it is even, this avoids even multiplies. */
        XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));

        m128.high64 += (m128.low64 << 1);
        m128.low64  ^= (m128.high64 >> 3);

        m128.low64   = XXH_xorshift64(m128.low64, 35);
        m128.low64  *= PRIME_MX2;
        m128.low64   = XXH_xorshift64(m128.low64, 28);
        m128.high64  = XXH3_avalanche(m128.high64);
        return m128;
    }
}

XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(input != NULL);
    XXH_ASSERT(secret != NULL);
    XXH_ASSERT(9 <= len && len <= 16);
    {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
        xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
        xxh_u64 const input_lo = XXH_readLE64(input);
        xxh_u64       input_hi = XXH_readLE64(input + len - 8);
        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
        /*
         * Put len in the middle of m128 to ensure that the length gets mixed to
         * both the low and high bits in the 128x64 multiply below.
         */
        m128.low64 += (xxh_u64)(len - 1) << 54;
        input_hi   ^= bitfliph;
        /*
         * Add the high 32 bits of input_hi to the high 32 bits of m128, then
         * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
         * the high 64 bits of m128.
         *
         * The best approach to this operation is different on 32-bit and 64-bit.
         */
        if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
            /*
             * 32-bit optimized version, which is more readable.
             *
             * On 32-bit, it removes an ADC and delays a dependency between the two
             * halves of m128.high64, but it generates an extra mask on 64-bit.
             */
            m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
        } else {
            /*
             * 64-bit optimized (albeit more confusing) version.
             *
             * Uses some properties of addition and multiplication to remove the mask:
             *
             * Let:
             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
             *    c = XXH_PRIME32_2
             *
             *    a + (b * c)
             * Inverse Property: x + y - x == y
             *    a + (b * (1 + c - 1))
             * Distributive Property: x * (y + z) == (x * y) + (x * z)
             *    a + (b * 1) + (b * (c - 1))
             * Identity Property: x * 1 == x
             *    a + b + (b * (c - 1))
             *
             * Substitute a, b, and c:
             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
             *
             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
             *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
             */
            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
        }
        /* m128 ^= XXH_swap64(m128 >> 64); */
        m128.low64  ^= XXH_swap64(m128.high64);

        {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
            h128.high64 += m128.high64 * XXH_PRIME64_2;

            h128.low64   = XXH3_avalanche(h128.low64);
            h128.high64  = XXH3_avalanche(h128.high64);
            return h128;
    }   }
}

/*
 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
 */
XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
{
    XXH_ASSERT(len <= 16);
    {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
        if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
        if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
        {   XXH128_hash_t h128;
            xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
            xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
            h128.low64 = XXH64_avalanche(seed ^ bitflipl);
            h128.high64 = XXH64_avalanche( seed ^ bitfliph);
            return h128;
    }   }
}

/*
 * A bit slower than XXH3_mix16B, but handles multiply by zero better.
 */
XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
              const xxh_u8* secret, XXH64_hash_t seed)
{
    acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
    acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
    acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
    return acc;
}


XXH_FORCE_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                      XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(16 < len && len <= 128);

    {   XXH128_hash_t acc;
        acc.low64 = len * XXH_PRIME64_1;
        acc.high64 = 0;

#if XXH_SIZE_OPT >= 1
        {
            /* Smaller, but slightly slower. */
            unsigned int i = (unsigned int)(len - 1) / 32;
            do {
                acc = XXH128_mix32B(acc, input+16*i, input+len-16*(i+1), secret+32*i, seed);
            } while (i-- != 0);
        }
#else
        if (len > 32) {
            if (len > 64) {
                if (len > 96) {
                    acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
                }
                acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
            }
            acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
        }
        acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
#endif
        {   XXH128_hash_t h128;
            h128.low64  = acc.low64 + acc.high64;
            h128.high64 = (acc.low64    * XXH_PRIME64_1)
                        + (acc.high64   * XXH_PRIME64_4)
                        + ((len - seed) * XXH_PRIME64_2);
            h128.low64  = XXH3_avalanche(h128.low64);
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
            return h128;
        }
    }
}

XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                       XXH64_hash_t seed)
{
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);

    {   XXH128_hash_t acc;
        unsigned i;
        acc.low64 = len * XXH_PRIME64_1;
        acc.high64 = 0;
        /*
         *  We set as `i` as offset + 32. We do this so that unchanged
         * `len` can be used as upper bound. This reaches a sweet spot
         * where both x86 and aarch64 get simple agen and good codegen
         * for the loop.
         */
        for (i = 32; i < 160; i += 32) {
            acc = XXH128_mix32B(acc,
                                input  + i - 32,
                                input  + i - 16,
                                secret + i - 32,
                                seed);
        }
        acc.low64 = XXH3_avalanche(acc.low64);
        acc.high64 = XXH3_avalanche(acc.high64);
        /*
         * NB: `i <= len` will duplicate the last 32-bytes if
         * len % 32 was zero. This is an unfortunate necessity to keep
         * the hash result stable.
         */
        for (i=160; i <= len; i += 32) {
            acc = XXH128_mix32B(acc,
                                input + i - 32,
                                input + i - 16,
                                secret + XXH3_MIDSIZE_STARTOFFSET + i - 160,
                                seed);
        }
        /* last bytes */
        acc = XXH128_mix32B(acc,
                            input + len - 16,
                            input + len - 32,
                            secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
                            (XXH64_hash_t)0 - seed);

        {   XXH128_hash_t h128;
            h128.low64  = acc.low64 + acc.high64;
            h128.high64 = (acc.low64    * XXH_PRIME64_1)
                        + (acc.high64   * XXH_PRIME64_4)
                        + ((len - seed) * XXH_PRIME64_2);
            h128.low64  = XXH3_avalanche(h128.low64);
            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
            return h128;
        }
    }
}

XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
                            const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
                            XXH3_f_accumulate f_acc,
                            XXH3_f_scrambleAcc f_scramble)
{
    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;

    XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc, f_scramble);

    /* converge into final hash */
    XXH_STATIC_ASSERT(sizeof(acc) == 64);
    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
    {   XXH128_hash_t h128;
        h128.low64  = XXH3_mergeAccs(acc,
                                     secret + XXH_SECRET_MERGEACCS_START,
                                     (xxh_u64)len * XXH_PRIME64_1);
        h128.high64 = XXH3_mergeAccs(acc,
                                     secret + secretSize
                                            - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
                                     ~((xxh_u64)len * XXH_PRIME64_2));
        return h128;
    }
}

/*
 * It's important for performance that XXH3_hashLong() is not inlined.
 */
XXH_NO_INLINE XXH_PUREF XXH128_hash_t
XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
                           XXH64_hash_t seed64,
                           const void* XXH_RESTRICT secret, size_t secretLen)
{
    (void)seed64; (void)secret; (void)secretLen;
    return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
                                       XXH3_accumulate, XXH3_scrambleAcc);
}

/*
 * It's important for performance to pass @p secretLen (when it's static)
 * to the compiler, so that it can properly optimize the vectorized loop.
 *
 * When the secret size is unknown, or on GCC 12 where the mix of NO_INLINE and FORCE_INLINE
 * breaks -Og, this is XXH_NO_INLINE.
 */
XXH3_WITH_SECRET_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
                              XXH64_hash_t seed64,
                              const void* XXH_RESTRICT secret, size_t secretLen)
{
    (void)seed64;
    return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
                                       XXH3_accumulate, XXH3_scrambleAcc);
}

XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
                                XXH64_hash_t seed64,
                                XXH3_f_accumulate f_acc,
                                XXH3_f_scrambleAcc f_scramble,
                                XXH3_f_initCustomSecret f_initSec)
{
    if (seed64 == 0)
        return XXH3_hashLong_128b_internal(input, len,
                                           XXH3_kSecret, sizeof(XXH3_kSecret),
                                           f_acc, f_scramble);
    {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
        f_initSec(secret, seed64);
        return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
                                           f_acc, f_scramble);
    }
}

/*
 * It's important for performance that XXH3_hashLong is not inlined.
 */
XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void* input, size_t len,
                            XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
{
    (void)secret; (void)secretLen;
    return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
                XXH3_accumulate, XXH3_scrambleAcc, XXH3_initCustomSecret);
}

typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
                                            XXH64_hash_t, const void* XXH_RESTRICT, size_t);

XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void* input, size_t len,
                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
                      XXH3_hashLong128_f f_hl128)
{
    XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
    /*
     * If an action is to be taken if `secret` conditions are not respected,
     * it should be done here.
     * For now, it's a contract pre-condition.
     * Adding a check and a branch here would cost performance at every hash.
     */
    if (len <= 16)
        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
    if (len <= 128)
        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    if (len <= XXH3_MIDSIZE_MAX)
        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
    return f_hl128(input, len, seed64, secret, secretLen);
}


/* ===   Public XXH128 API   === */

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(XXH_NOESCAPE const void* input, size_t len)
{
    return XXH3_128bits_internal(input, len, 0,
                                 XXH3_kSecret, sizeof(XXH3_kSecret),
                                 XXH3_hashLong_128b_default);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize)
{
    return XXH3_128bits_internal(input, len, 0,
                                 (const xxh_u8*)secret, secretSize,
                                 XXH3_hashLong_128b_withSecret);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
    return XXH3_128bits_internal(input, len, seed,
                                 XXH3_kSecret, sizeof(XXH3_kSecret),
                                 XXH3_hashLong_128b_withSeed);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecretandSeed(XXH_NOESCAPE const void* input, size_t len, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
    if (len <= XXH3_MIDSIZE_MAX)
        return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
    return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128(XXH_NOESCAPE const void* input, size_t len, XXH64_hash_t seed)
{
    return XXH3_128bits_withSeed(input, len, seed);
}


/* ===   XXH3 128-bit streaming   === */
#ifndef XXH_NO_STREAM
/*
 * All initialization and update functions are identical to 64-bit streaming variant.
 * The only difference is the finalization routine.
 */

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH_NOESCAPE XXH3_state_t* statePtr)
{
    return XXH3_64bits_reset(statePtr);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize)
{
    return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH64_hash_t seed)
{
    return XXH3_64bits_reset_withSeed(statePtr, seed);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH_NOESCAPE XXH3_state_t* statePtr, XXH_NOESCAPE const void* secret, size_t secretSize, XXH64_hash_t seed)
{
    return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH_NOESCAPE XXH3_state_t* state, XXH_NOESCAPE const void* input, size_t len)
{
    return XXH3_64bits_update(state, input, len);
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (XXH_NOESCAPE const XXH3_state_t* state)
{
    const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
    if (state->totalLen > XXH3_MIDSIZE_MAX) {
        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
        XXH3_digest_long(acc, state, secret);
        XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
        {   XXH128_hash_t h128;
            h128.low64  = XXH3_mergeAccs(acc,
                                         secret + XXH_SECRET_MERGEACCS_START,
                                         (xxh_u64)state->totalLen * XXH_PRIME64_1);
            h128.high64 = XXH3_mergeAccs(acc,
                                         secret + state->secretLimit + XXH_STRIPE_LEN
                                                - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
                                         ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
            return h128;
        }
    }
    /* len <= XXH3_MIDSIZE_MAX : short code */
    if (state->seed)
        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
                                   secret, state->secretLimit + XXH_STRIPE_LEN);
}
#endif /* !XXH_NO_STREAM */
/* 128-bit utility functions */

#include <string.h>   /* memcmp, memcpy */

/* return : 1 is equal, 0 if different */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
{
    /* note : XXH128_hash_t is compact, it has no padding byte */
    return !(memcmp(&h1, &h2, sizeof(h1)));
}

/* This prototype is compatible with stdlib's qsort().
 * @return : >0 if *h128_1  > *h128_2
 *           <0 if *h128_1  < *h128_2
 *           =0 if *h128_1 == *h128_2  */
/*! @ingroup XXH3_family */
XXH_PUBLIC_API int XXH128_cmp(XXH_NOESCAPE const void* h128_1, XXH_NOESCAPE const void* h128_2)
{
    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
    /* note : bets that, in most cases, hash values are different */
    if (hcmp) return hcmp;
    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
}


/*======   Canonical representation   ======*/
/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH_NOESCAPE XXH128_canonical_t* dst, XXH128_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) {
        hash.high64 = XXH_swap64(hash.high64);
        hash.low64  = XXH_swap64(hash.low64);
    }
    XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
    XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(XXH_NOESCAPE const XXH128_canonical_t* src)
{
    XXH128_hash_t h;
    h.high64 = XXH_readBE64(src);
    h.low64  = XXH_readBE64(src->digest + 8);
    return h;
}



/* ==========================================
 * Secret generators
 * ==========================================
 */
#define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))

XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
{
    XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
    XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API XXH_errorcode
XXH3_generateSecret(XXH_NOESCAPE void* secretBuffer, size_t secretSize, XXH_NOESCAPE const void* customSeed, size_t customSeedSize)
{
#if (XXH_DEBUGLEVEL >= 1)
    XXH_ASSERT(secretBuffer != NULL);
    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
#else
    /* production mode, assert() are disabled */
    if (secretBuffer == NULL) return XXH_ERROR;
    if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
#endif

    if (customSeedSize == 0) {
        customSeed = XXH3_kSecret;
        customSeedSize = XXH_SECRET_DEFAULT_SIZE;
    }
#if (XXH_DEBUGLEVEL >= 1)
    XXH_ASSERT(customSeed != NULL);
#else
    if (customSeed == NULL) return XXH_ERROR;
#endif

    /* Fill secretBuffer with a copy of customSeed - repeat as needed */
    {   size_t pos = 0;
        while (pos < secretSize) {
            size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
            memcpy((char*)secretBuffer + pos, customSeed, toCopy);
            pos += toCopy;
    }   }

    {   size_t const nbSeg16 = secretSize / 16;
        size_t n;
        XXH128_canonical_t scrambler;
        XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
        for (n=0; n<nbSeg16; n++) {
            XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
            XXH3_combine16((char*)secretBuffer + n*16, h128);
        }
        /* last segment */
        XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
    }
    return XXH_OK;
}

/*! @ingroup XXH3_family */
XXH_PUBLIC_API void
XXH3_generateSecret_fromSeed(XXH_NOESCAPE void* secretBuffer, XXH64_hash_t seed)
{
    XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
    XXH3_initCustomSecret(secret, seed);
    XXH_ASSERT(secretBuffer != NULL);
    memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
}



/* Pop our optimization override from above */
#if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
  && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
  && defined(__OPTIMIZE__) && XXH_SIZE_OPT <= 0 /* respect -O0 and -Os */
#  pragma GCC pop_options
#endif

#endif  /* XXH_NO_LONG_LONG */

#endif  /* XXH_NO_XXH3 */

/*!
 * @}
 */
#endif  /* XXH_IMPLEMENTATION */


#if defined (__cplusplus)
} /* extern "C" */
#endif