File bio_eda.py
has 392 lines of code (exceeds 250 allowed). Consider refactoring. Open
# -*- coding: utf-8 -*-
from __future__ import division
import pandas as pd
import numpy as np
import biosppy
Function eda_EventRelated
has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring. Open
def eda_EventRelated(epoch, event_length, window_post=4):
"""
Extract event-related EDA and Skin Conductance Response (SCR).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function cvxEDA
has 41 lines of code (exceeds 25 allowed). Consider refactoring. Open
def cvxEDA(eda, sampling_rate=1000, tau0=2., tau1=0.7, delta_knot=10., alpha=8e-4, gamma=1e-2, solver=None, verbose=False, options={'reltol':1e-9}):
"""
A convex optimization approach to electrodermal activity processing (CVXEDA).
This function implements the cvxEDA algorithm described in "cvxEDA: a
Function eda_scr
has a Cognitive Complexity of 13 (exceeds 5 allowed). Consider refactoring. Open
def eda_scr(signal, sampling_rate=1000, treshold=0.1, method="fast"):
"""
Skin-Conductance Responses extraction algorithm.
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function eda_process
has a Cognitive Complexity of 12 (exceeds 5 allowed). Consider refactoring. Open
def eda_process(eda, sampling_rate=1000, alpha=8e-4, gamma=1e-2, filter_type = "butter", scr_method="makowski", scr_treshold=0.1):
"""
Automated processing of EDA signal using convex optimization (CVXEDA; Greco et al., 2015).
Parameters
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function cvxEDA
has 10 arguments (exceeds 4 allowed). Consider refactoring. Open
def cvxEDA(eda, sampling_rate=1000, tau0=2., tau1=0.7, delta_knot=10., alpha=8e-4, gamma=1e-2, solver=None, verbose=False, options={'reltol':1e-9}):
Function eda_process
has 7 arguments (exceeds 4 allowed). Consider refactoring. Open
def eda_process(eda, sampling_rate=1000, alpha=8e-4, gamma=1e-2, filter_type = "butter", scr_method="makowski", scr_treshold=0.1):
Similar blocks of code found in 2 locations. Consider refactoring. Open
M = cv.spmatrix(np.tile(ma, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 69.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
A = cv.spmatrix(np.tile(ar, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 69.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76