niklas2810/my-discord-butler

View on GitHub

Showing 13 of 19 total issues

Method execute has a Cognitive Complexity of 11 (exceeds 5 allowed). Consider refactoring.
Confirmed

    public ResultBuilder execute(String content, Message origin) {
        String[] parts = content.split(" ");
        String name = parts[0].toLowerCase();
        String[] args = Arrays.copyOfRange(parts, 1, parts.length);

Severity: Minor
Found in src/main/java/com/niklasarndt/discordbutler/ModuleManager.java - About 1 hr to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

Method runProcessingChecks has a Cognitive Complexity of 9 (exceeds 5 allowed). Consider refactoring.
Open

    private boolean runProcessingChecks(Message message, String emoji) {
        if (message == null || !message.getAuthor().isBot()) {
            logger.debug("Not suitable for reaction processing");
            return false;
        }

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

This block of commented-out lines of code should be removed.
Open

        int seconds = (int) (ms / 1000) % 60; //1.000 * 60;

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

This block of commented-out lines of code should be removed.
Open

        int minutes = (int) (ms / 60000) % 60; //1.000 * 60;

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

This accessibility bypass should be removed.
Open

                    field.set(null, "UNKNOWN");

This rule raises an issue when reflection is used to change the visibility of a class, method or field, and when it is used to directly update a field value. Altering or bypassing the accessibility of classes, methods, or fields violates the encapsulation principle and could lead to run-time errors.

Noncompliant Code Example

public void makeItPublic(String methodName) throws NoSuchMethodException {

  this.getClass().getMethod(methodName).setAccessible(true); // Noncompliant
}

public void setItAnyway(String fieldName, int value) {
  this.getClass().getDeclaredField(fieldName).setInt(this, value); // Noncompliant; bypasses controls in setter
}

See

  • CERT, SEC05-J. - Do not use reflection to increase accessibility of classes, methods, or fields

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

            } catch (InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Change the visibility of this constructor to "protected".
Open

    public ButlerCommand(String name, String description, String... aliases) {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Change the visibility of this constructor to "protected".
Open

    public ButlerModule(String emoji, String name, String displayName,

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

        } catch (InterruptedException e) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Change the visibility of this constructor to "protected".
Open

    public ButlerCommand(String name, int argsMin, int argsMax) {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Remove this unused private "hasModule" method.
Open

    private boolean hasModule(ButlerModule module) {

private methods that are never executed are dead code: unnecessary, inoperative code that should be removed. Cleaning out dead code decreases the size of the maintained codebase, making it easier to understand the program and preventing bugs from being introduced.

Note that this rule does not take reflection into account, which means that issues will be raised on private methods that are only accessed using the reflection API.

Noncompliant Code Example

public class Foo implements Serializable
{
  private Foo(){}     //Compliant, private empty constructor intentionally used to prevent any direct instantiation of a class.
  public static void doSomething(){
    Foo foo = new Foo();
    ...
  }
  private void unusedPrivateMethod(){...}
  private void writeObject(ObjectOutputStream s){...}  //Compliant, relates to the java serialization mechanism
  private void readObject(ObjectInputStream in){...}  //Compliant, relates to the java serialization mechanism
}

Compliant Solution

public class Foo implements Serializable
{
  private Foo(){}     //Compliant, private empty constructor intentionally used to prevent any direct instantiation of a class.
  public static void doSomething(){
    Foo foo = new Foo();
    ...
  }

  private void writeObject(ObjectOutputStream s){...}  //Compliant, relates to the java serialization mechanism

  private void readObject(ObjectInputStream in){...}  //Compliant, relates to the java serialization mechanism
}

Exceptions

This rule doesn't raise any issue on annotated methods.

Change the visibility of this constructor to "protected".
Open

    public ButlerCommand(String name) {

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}

Change the visibility of this constructor to "protected".
Open

    public ButlerCommand(String name, int argsMin, int argsMax,

Abstract classes should not have public constructors. Constructors of abstract classes can only be called in constructors of their subclasses. So there is no point in making them public. The protected modifier should be enough.

Noncompliant Code Example

public abstract class AbstractClass1 {
    public AbstractClass1 () { // Noncompliant, has public modifier
        // do something here
    }
}

Compliant Solution

public abstract class AbstractClass2 {
    protected AbstractClass2 () {
        // do something here
    }
}
Severity
Category
Status
Source
Language