pointhi/kicad-footprint-generator

View on GitHub

Showing 257 of 257 total issues

Similar blocks of code found in 2 locations. Consider refactoring.
Open

        top = -self.grid['y']*(self.pincount[1]-1)/2+self.center['y']
Severity: Major
Found in KicadModTree/nodes/specialized/ChamferedPadGrid.py and 1 other location - About 2 hrs to fix
KicadModTree/nodes/specialized/ChamferedPadGrid.py on lines 336..336

Duplicated Code

Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

Tuning

This issue has a mass of 57.

We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

Refactorings

Further Reading

Function _initFromCenterAndEnd has a Cognitive Complexity of 19 (exceeds 5 allowed). Consider refactoring.
Open

    def _initFromCenterAndEnd(self, **kwargs):
        self.center_pos = Vector2D(kwargs['center'])
        if 'start' in kwargs:
            self.start_pos = Vector2D(kwargs['start'])
            sp_r, sp_a = self.start_pos.to_polar(
Severity: Minor
Found in KicadModTree/util/geometric_util.py - About 2 hrs to fix

Cognitive Complexity

Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

A method's cognitive complexity is based on a few simple rules:

  • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
  • Code is considered more complex for each "break in the linear flow of the code"
  • Code is considered more complex when "flow breaking structures are nested"

Further reading

File KicadFileHandler.py has 274 lines of code (exceeds 250 allowed). Consider refactoring.
Open

# KicadModTree is free software: you can redistribute it and/or
# modify it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
Severity: Minor
Found in KicadModTree/KicadFileHandler.py - About 2 hrs to fix

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

            pads.extend(ExposedPad.__createPasteGrids(
                        original=pad_side, grid=self.via_grid,
                        count=[1, self.via_layout[1]-1],
                        center=[x, self.at['y']]
    Severity: Major
    Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
    KicadModTree/nodes/specialized/ExposedPad.py on lines 379..382

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 56.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

            pads.extend(ExposedPad.__createPasteGrids(
                        original=pad_side, grid=self.via_grid,
                        count=[self.via_layout[0]-1, 1],
                        center=[self.at['x'], y]
    Severity: Major
    Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
    KicadModTree/nodes/specialized/ExposedPad.py on lines 425..428

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 56.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

            pads.extend(ExposedPad.__createPasteGrids(
                        original=pad_side, grid=self.via_grid,
                        count=[1, self.via_layout[1]-1],
                        center=[x, self.at['y']]
    Severity: Major
    Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
    KicadModTree/nodes/specialized/ExposedPad.py on lines 366..369

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 56.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Identical blocks of code found in 2 locations. Consider refactoring.
    Open

            pads.extend(ExposedPad.__createPasteGrids(
                        original=pad_side, grid=self.via_grid,
                        count=[self.via_layout[0]-1, 1],
                        center=[self.at['x'], y]
    Severity: Major
    Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
    KicadModTree/nodes/specialized/ExposedPad.py on lines 412..415

    Duplicated Code

    Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

    Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

    When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

    Tuning

    This issue has a mass of 56.

    We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

    The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

    If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

    See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

    Refactorings

    Further Reading

    Cyclomatic complexity is too high in method _initPasteSettings. (10)
    Open

        def _initPasteSettings(self, **kwargs):
            self.solder_paste_margin = kwargs.get('solder_paste_margin', 0)
            if 'paste_outer_diameter' in kwargs and 'paste_inner_diameter' in kwargs:
                self.paste_width = (kwargs['paste_outer_diameter'] - kwargs['paste_inner_diameter'])/2
                self.paste_center = (kwargs['paste_outer_diameter'] + kwargs['paste_inner_diameter'])/4

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Cyclomatic complexity is too high in method _execute_script. (10)
    Open

        def _execute_script(self, **kwargs):
            parsed_args = {}
            error = False
    
            for k, v in self._params.items():
    Severity: Minor
    Found in KicadModTree/ModArgparser.py by radon

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Cyclomatic complexity is too high in method _initPincount. (10)
    Open

        def _initPincount(self, **kwargs):
            if not kwargs.get('pincount'):
                raise KeyError('pincount not declared (like "pincount=10")')
            self.pincount = kwargs.get('pincount')
            if type(self.pincount) is not int or self.pincount <= 0:

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Cyclomatic complexity is too high in method _serializeTree. (10)
    Open

        def _serializeTree(self):
            nodes = self.kicad_mod.serialize()
    
            grouped_nodes = {}
    
    
    Severity: Minor
    Found in KicadModTree/KicadFileHandler.py by radon

    Cyclomatic Complexity

    Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

    Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

    Construct Effect on CC Reasoning
    if +1 An if statement is a single decision.
    elif +1 The elif statement adds another decision.
    else +0 The else statement does not cause a new decision. The decision is at the if.
    for +1 There is a decision at the start of the loop.
    while +1 There is a decision at the while statement.
    except +1 Each except branch adds a new conditional path of execution.
    finally +0 The finally block is unconditionally executed.
    with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
    assert +1 The assert statement internally roughly equals a conditional statement.
    Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
    Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

    Source: http://radon.readthedocs.org/en/latest/intro.html

    Pad has 22 functions (exceeds 20 allowed). Consider refactoring.
    Open

    class Pad(Node):
        r"""Add a Pad to the render tree
    
        :param \**kwargs:
            See below
    Severity: Minor
    Found in KicadModTree/nodes/base/Pad.py - About 2 hrs to fix

      geometricArc has 22 functions (exceeds 20 allowed). Consider refactoring.
      Open

      class geometricArc():
          r""" Handle the geometric side of arcs
      
          :params:
              * *center* (``Vector2D``) --
      Severity: Minor
      Found in KicadModTree/util/geometric_util.py - About 2 hrs to fix

        Cyclomatic complexity is too high in method _initNodes. (9)
        Open

            def _initNodes(self, **kwargs):
                self.nodes = []
                if 'nodes' in kwargs:
                    for n in kwargs['nodes']:
                        self.nodes.append(Vector2D(n))
        Severity: Minor
        Found in KicadModTree/PolygonPoints.py by radon

        Cyclomatic Complexity

        Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

        Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

        Construct Effect on CC Reasoning
        if +1 An if statement is a single decision.
        elif +1 The elif statement adds another decision.
        else +0 The else statement does not cause a new decision. The decision is at the if.
        for +1 There is a decision at the start of the loop.
        while +1 There is a decision at the while statement.
        except +1 Each except branch adds a new conditional path of execution.
        finally +0 The finally block is unconditionally executed.
        with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
        assert +1 The assert statement internally roughly equals a conditional statement.
        Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
        Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

        Source: http://radon.readthedocs.org/en/latest/intro.html

        Cyclomatic complexity is too high in method __init__. (9)
        Open

            def __init__(self, **kwargs):
                Node.__init__(self)
                self.radius_ratio = 0
        
                self._initNumber(**kwargs)
        Severity: Minor
        Found in KicadModTree/nodes/base/Pad.py by radon

        Cyclomatic Complexity

        Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

        Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

        Construct Effect on CC Reasoning
        if +1 An if statement is a single decision.
        elif +1 The elif statement adds another decision.
        else +0 The else statement does not cause a new decision. The decision is at the if.
        for +1 There is a decision at the start of the loop.
        while +1 There is a decision at the while statement.
        except +1 Each except branch adds a new conditional path of execution.
        finally +0 The finally block is unconditionally executed.
        with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
        assert +1 The assert statement internally roughly equals a conditional statement.
        Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
        Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

        Source: http://radon.readthedocs.org/en/latest/intro.html

        Cyclomatic complexity is too high in method _initPasteForAvoidingVias. (9)
        Open

            def _initPasteForAvoidingVias(self, **kwargs):
                self.via_clarance = kwargs.get('via_paste_clarance', 0.05)
        
                # check get against none to allow the caller to use None as the sign to ignore these.
                if kwargs.get('paste_between_vias') is not None\

        Cyclomatic Complexity

        Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

        Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

        Construct Effect on CC Reasoning
        if +1 An if statement is a single decision.
        elif +1 The elif statement adds another decision.
        else +0 The else statement does not cause a new decision. The decision is at the if.
        for +1 There is a decision at the start of the loop.
        while +1 There is a decision at the while statement.
        except +1 Each except branch adds a new conditional path of execution.
        finally +0 The finally block is unconditionally executed.
        with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
        assert +1 The assert statement internally roughly equals a conditional statement.
        Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
        Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

        Source: http://radon.readthedocs.org/en/latest/intro.html

        Function getOptionalNumberTypeParam has a Cognitive Complexity of 17 (exceeds 5 allowed). Consider refactoring.
        Open

        def getOptionalNumberTypeParam(
                kwargs, param_name, default_value=None,
                low_limit=None, high_limit=None, allow_equal_limit=True):
            r""" Get a named parameter from packed dict and guarantee it is a number (float or int)
        
        
        Severity: Minor
        Found in KicadModTree/util/paramUtil.py - About 2 hrs to fix

        Cognitive Complexity

        Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

        A method's cognitive complexity is based on a few simple rules:

        • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
        • Code is considered more complex for each "break in the linear flow of the code"
        • Code is considered more complex when "flow breaking structures are nested"

        Further reading

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

                y = self.at[1]-(self.via_layout[1]-2)/2*self.via_grid[1]
        Severity: Major
        Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
        KicadModTree/nodes/specialized/ExposedPad.py on lines 393..393

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 53.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Similar blocks of code found in 2 locations. Consider refactoring.
        Open

                x = self.at[0]-(self.via_layout[0]-2)/2*self.via_grid[0]
        Severity: Major
        Found in KicadModTree/nodes/specialized/ExposedPad.py and 1 other location - About 2 hrs to fix
        KicadModTree/nodes/specialized/ExposedPad.py on lines 348..348

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 53.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Similar blocks of code found in 4 locations. Consider refactoring.
        Open

                if 'x_mirror' in kwargs and type(kwargs['x_mirror']) in [float, int]:
                    self.mirror[0] = kwargs['x_mirror']
        Severity: Major
        Found in KicadModTree/nodes/base/Pad.py and 3 other locations - About 2 hrs to fix
        KicadModTree/nodes/base/Pad.py on lines 262..263
        KicadModTree/PolygonPoints.py on lines 71..72
        KicadModTree/PolygonPoints.py on lines 73..74

        Duplicated Code

        Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

        Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

        When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

        Tuning

        This issue has a mass of 53.

        We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

        The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

        If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

        See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

        Refactorings

        Further Reading

        Severity
        Category
        Status
        Source
        Language