c3/experiment.py
"""
Experiment class that models and simulates the whole experiment.
It combines the information about the model of the quantum device, the control stack
and the operations that can be done on the device.
Given this information an experiment run is simulated, returning either processes,
states or populations.
"""
import os
import copy
import pickle
import itertools
import hjson
import numpy as np
import tensorflow as tf
from typing import Dict
import time
from c3.c3objs import hjson_encode, hjson_decode
from c3.generator.generator import Generator
from c3.parametermap import ParameterMap
from c3.signal.gates import Instruction
from c3.model import Model
from c3.utils.tf_utils import (
tf_state_to_dm,
tf_super,
tf_vec_to_dm,
_tf_matmul_n_even,
_tf_matmul_n_odd,
)
from c3.libraries.propagation import unitary_provider, state_provider
from c3.utils.qt_utils import perfect_single_q_parametric_gate
class Experiment:
"""
It models all of the behaviour of the physical experiment, serving as a
host for the individual parts making up the experiment.
Parameters
----------
pmap: ParameterMap
including
model: Model
The underlying physical device.
generator: Generator
The infrastructure for generating and sending control signals to the
device.
gateset: GateSet
A gate level description of the operations implemented by control
pulses.
"""
def __init__(self, pmap: ParameterMap = None, prop_method=None, sim_res=100e9):
self.pmap = pmap
self.opt_gates = None
self.propagators: Dict[str, tf.Tensor] = {}
self.partial_propagators: Dict = {}
self.created_by = None
self.logdir: str = ""
self.propagate_batch_size = None
self.use_control_fields = True
self.overwrite_propagators = True # Keep only currently computed propagators
self.compute_propagators_timestamp = 0
self.stop_partial_propagator_gradient = True
self.evaluate = self.evaluate_legacy
self.sim_res = sim_res
self.prop_method = prop_method
self.set_prop_method(prop_method)
def set_prop_method(self, prop_method=None) -> None:
"""
Configure the selected propagation method by either linking the function handle or
looking it up in the library.
"""
if prop_method is None:
self.propagation = unitary_provider["pwc"]
if self.pmap is not None:
self._compute_folding_stack()
elif isinstance(prop_method, str):
try:
self.propagation = unitary_provider[prop_method]
except KeyError:
self.propagation = state_provider[prop_method]
elif callable(prop_method):
self.propagation = prop_method
def _compute_folding_stack(self):
self.folding_stack = {}
for instr in self.pmap.instructions.values():
n_steps = int((instr.t_end - instr.t_start) * self.sim_res)
if n_steps not in self.folding_stack:
stack = []
while n_steps > 1:
if not n_steps % 2: # is divisable by 2
stack.append(_tf_matmul_n_even)
else:
stack.append(_tf_matmul_n_odd)
n_steps = np.ceil(n_steps / 2)
self.folding_stack[
int((instr.t_end - instr.t_start) * self.sim_res)
] = stack
def enable_qasm(self) -> None:
"""
Switch the sequencing format to QASM. Will become the default.
"""
self.evaluate = self.evaluate_qasm
def set_created_by(self, config):
"""
Store the config file location used to created this experiment.
"""
self.created_by = config
def load_quick_setup(self, filepath: str) -> None:
"""
Load a quick setup file.
Parameters
----------
filepath : str
Location of the configuration file
"""
with open(filepath, "r") as cfg_file:
cfg = hjson.loads(cfg_file.read(), object_pairs_hook=hjson_decode)
self.quick_setup(cfg, os.path.dirname(filepath))
def quick_setup(self, cfg, base_dir: str = None) -> None:
"""
Load a quick setup cfg and create all necessary components.
Parameters
----------
cfg : Dict
Configuration options
"""
def make_absolute(filename: str) -> str:
if base_dir or os.path.isabs(filename):
return os.path.join(base_dir, filename)
else:
return filename
model = Model()
model.read_config(make_absolute(cfg["model"]))
gen = Generator()
gen.read_config(make_absolute(cfg["generator"]))
single_gate_time = cfg["single_qubit_gate_time"]
v2hz = cfg["v2hz"]
instructions = []
sideband = cfg.pop("sideband", None)
for gate_name, props in cfg["single_qubit_gates"].items():
target_qubit = model.subsystems[props["qubits"]]
instr = Instruction(
name=props["name"],
targets=[model.names.index(props["qubits"])],
t_start=0.0,
t_end=single_gate_time,
channels=[target_qubit.drive_line],
)
instr.quick_setup(
target_qubit.drive_line,
target_qubit.params["freq"].get_value() / 2 / np.pi,
single_gate_time,
v2hz,
sideband,
)
instructions.append(instr)
for gate_name, props in cfg["two_qubit_gates"].items():
qubit_1 = model.subsystems[props["qubit_1"]]
qubit_2 = model.subsystems[props["qubit_2"]]
instr = Instruction(
name=props["name"],
targets=[
model.names.index(props["qubit_1"]),
model.names.index(props["qubit_2"]),
],
t_start=0.0,
t_end=props["gate_time"],
channels=[qubit_1.drive_line, qubit_2.drive_line],
)
instr.quick_setup(
qubit_1.drive_line,
qubit_1.params["freq"].get_value() / 2 / np.pi,
props["gate_time"],
v2hz,
sideband,
)
instr.quick_setup(
qubit_2.drive_line,
qubit_2.params["freq"].get_value() / 2 / np.pi,
props["gate_time"],
v2hz,
sideband,
)
instructions.append(instr)
self.sim_res = 100e9
self.pmap = ParameterMap(instructions, generator=gen, model=model)
self.set_prop_method()
def read_config(self, filepath: str) -> None:
"""
Load a file and parse it to create a Model object.
Parameters
----------
filepath : str
Location of the configuration file
"""
with open(filepath, "r") as cfg_file:
cfg = hjson.loads(cfg_file.read(), object_pairs_hook=hjson_decode)
self.from_dict(cfg)
def from_dict(self, cfg: Dict) -> None:
"""
Load experiment from dictionary
"""
model = Model()
model.fromdict(cfg["model"])
generator = Generator()
generator.fromdict(cfg["generator"])
pmap = ParameterMap(model=model, generator=generator)
pmap.fromdict(cfg["instructions"])
if "options" in cfg:
for k, v in cfg["options"].items():
self.__dict__[k] = v
self.pmap = pmap
self.sim_res = cfg.pop("sim_res", 100e9)
self.set_prop_method()
def write_config(self, filepath: str) -> None:
"""
Write dictionary to a HJSON file.
"""
with open(filepath, "w") as cfg_file:
hjson.dump(self.asdict(), cfg_file, default=hjson_encode)
def asdict(self) -> Dict:
"""
Return a dictionary compatible with config files.
"""
exp_dict: Dict[str, Dict] = {}
exp_dict["instructions"] = {}
for name, instr in self.pmap.instructions.items():
exp_dict["instructions"][name] = instr.asdict()
exp_dict["model"] = self.pmap.model.asdict()
exp_dict["generator"] = self.pmap.generator.asdict()
exp_dict["options"] = {
"propagate_batch_size": self.propagate_batch_size,
"use_control_fields": self.use_control_fields,
"overwrite_propagators": self.overwrite_propagators,
"stop_partial_propagator_gradient": self.stop_partial_propagator_gradient,
}
exp_dict["sim_res"] = self.sim_res
return exp_dict
def __str__(self) -> str:
return hjson.dumps(self.asdict(), default=hjson_encode)
def evaluate_legacy(self, sequences, psi_init: tf.Tensor = None):
"""
Compute the population values for a given sequence of operations.
Parameters
----------
sequences: str list
A list of control pulses/gates to perform on the device.
psi_init: tf.Tensor
A tensor containing the initial statevector
Returns
-------
list
A list of populations
"""
model = self.pmap.model
if psi_init is None:
psi_init = model.get_init_state()
populations = []
for sequence in sequences:
psi_t = copy.deepcopy(psi_init)
for gate in sequence:
psi_t = tf.matmul(self.propagators[gate], psi_t)
pops = self.populations(psi_t, model.lindbladian)
populations.append(pops)
return populations
def evaluate_qasm(self, sequences, psi_init: tf.Tensor = None):
"""
Compute the population values for a given sequence (in QASM format) of
operations.
Parameters
----------
sequences: dict list
A list of control pulses/gates to perform on the device in QASM format.
psi_init: tf.Tensor
A tensor containing the initial statevector
Returns
-------
list
A list of populations
"""
model = self.pmap.model
if psi_init is None:
psi_init = model.get_init_state()
self.psi_init = psi_init
populations = []
for sequence in sequences:
psi_t = copy.deepcopy(self.psi_init)
for gate in sequence:
psi_t = tf.matmul(self.lookup_gate(**gate), psi_t)
pops = self.populations(psi_t, model.lindbladian)
populations.append(pops)
return populations
def lookup_gate(self, name, qubits, params=None) -> tf.constant:
"""
Returns a fixed operation or a parametric virtual Z gate. To be extended to
general parametric gates.
"""
if name == "VZ":
gate = tf.constant(self.get_VZ(qubits, params))
else:
gate = self.propagators[name + str(qubits)]
return gate
def get_VZ(self, target, params):
"""
Returns the appropriate Z-rotation.
"""
dims = self.pmap.model.dims
return perfect_single_q_parametric_gate("Z", target[0], params[0], dims)
def process(self, populations, labels=None):
"""
Apply a readout procedure to a population vector. Very specialized
at the moment.
Parameters
----------
populations: list
List of populations from evaluating.
labels: list
List of state labels specifying a subspace.
Returns
-------
list
A list of processed populations.
"""
model = self.pmap.model
populations_final = []
populations_no_rescale = []
for pops in populations:
# TODO: Loop over all model.tasks in a general fashion
# TODO: Selecting states by label in the case of computational space
if "conf_matrix" in model.tasks:
pops = model.tasks["conf_matrix"].confuse(pops)
if labels is not None:
pops_select = 0
for label in labels:
pops_select += pops[model.comp_state_labels.index(label)]
pops = pops_select
else:
pops = tf.reshape(pops, [pops.shape[0]])
else:
if labels is not None:
pops_select = 0
for label in labels:
try:
pops_select += pops[model.state_labels.index(label)]
except ValueError:
raise Exception(
f"C3:ERROR:State {label} not defined. Available are:\n"
f"{model.state_labels}"
)
pops = pops_select
else:
pops = tf.reshape(pops, [pops.shape[0]])
if "meas_rescale" in model.tasks:
populations_no_rescale.append(pops)
pops = model.tasks["meas_rescale"].rescale(pops)
populations_final.append(pops)
return populations_final, populations_no_rescale
def get_perfect_gates(self, gate_keys: list = None) -> Dict[str, np.ndarray]:
"""Return a perfect gateset for the gate_keys.
Parameters
----------
gate_keys: list
(Optional) List of gates to evaluate.
Returns
-------
Dict[str, np.array]
A dictionary of gate names and np.array representation
of the corresponding unitary
Raises
------
Exception
Raise general exception for undefined gate
"""
instructions = self.pmap.instructions
gates = {}
dims = self.pmap.model.dims
if gate_keys is None:
gate_keys = instructions.keys() # type: ignore
for gate in gate_keys:
gates[gate] = instructions[gate].get_ideal_gate(dims)
# TODO parametric gates
return gates
def compute_propagators(self):
"""
Compute the unitary representation of operations. If no operations are
specified in self.opt_gates the complete gateset is computed.
Returns
-------
dict
A dictionary of gate names and their unitary representation.
"""
model = self.pmap.model
generator = self.pmap.generator
instructions = self.pmap.instructions
propagators = {}
partial_propagators = {}
gate_ids = self.opt_gates
if gate_ids is None:
gate_ids = instructions.keys()
self.set_prop_method(self.prop_method)
for gate in gate_ids:
try:
instr = instructions[gate]
except KeyError:
raise Exception(
f"C3:Error: Gate '{gate}' is not defined."
f" Available gates are:\n {list(instructions.keys())}."
)
model.controllability = self.use_control_fields
steps = int((instr.t_end - instr.t_start) * self.sim_res)
result = self.propagation(
model,
generator,
instr,
self.folding_stack[steps],
self.propagate_batch_size,
)
U = result["U"]
dUs = result["dUs"]
self.ts = result["ts"]
if model.use_FR:
# TODO change LO freq to at the level of a line
freqs = {}
framechanges = {}
for line, ctrls in instr.comps.items():
# TODO calculate properly the average frequency that each qubit sees
offset = tf.constant(0.0, tf.float64)
for ctrl in ctrls.values():
if "freq_offset" in ctrl.params.keys():
if ctrl.params["amp"] != 0.0:
offset = ctrl.params["freq_offset"].get_value()
freqs[line] = tf.cast(
ctrls["carrier"].params["freq"].get_value() + offset,
tf.complex128,
)
framechanges[line] = tf.cast(
ctrls["carrier"].params["framechange"].get_value(),
tf.complex128,
)
t_final = tf.constant(instr.t_end - instr.t_start, dtype=tf.complex128)
FR = model.get_Frame_Rotation(t_final, freqs, framechanges)
if model.lindbladian:
SFR = tf_super(FR)
U = tf.matmul(SFR, U)
self.FR = SFR
else:
U = tf.matmul(FR, U)
self.FR = FR
if model.dephasing_strength != 0.0:
if not model.lindbladian:
raise ValueError("Dephasing can only be added when lindblad is on.")
else:
amps = {}
for line, ctrls in instr.comps.items():
amp, sum = generator.devices["awg"].get_average_amp()
amps[line] = tf.cast(amp, tf.complex128)
t_final = tf.constant(
instr.t_end - instr.t_start, dtype=tf.complex128
)
dephasing_channel = model.get_dephasing_channel(t_final, amps)
U = tf.matmul(dephasing_channel, U)
propagators[gate] = U
partial_propagators[gate] = dUs
# TODO we might want to move storing of the propagators to the instruction object
if self.overwrite_propagators:
self.propagators = propagators
self.partial_propagators = partial_propagators
else:
self.propagators.update(propagators)
self.partial_propagators.update(partial_propagators)
self.compute_propagators_timestamp = time.time()
return propagators
def set_opt_gates(self, gates):
"""
Specify a selection of gates to be computed.
Parameters
----------
gates: Identifiers of the gates of interest. Can contain duplicates.
"""
if type(gates) is str:
gates = [gates]
self.opt_gates = gates
def set_opt_gates_seq(self, seqs):
"""
Specify a selection of gates to be computed.
Parameters
----------
seqs: Identifiers of the sequences of interest. Can contain duplicates.
"""
self.opt_gates = list(set(itertools.chain.from_iterable(seqs)))
def set_enable_store_unitaries(self, flag, logdir, exist_ok=False):
"""
Saving of unitary propagators.
Parameters
----------
flag: boolean
Enable or disable saving.
logdir: str
File path location for the resulting unitaries.
"""
self.enable_store_unitaries = flag
self.logdir = logdir
if self.enable_store_unitaries:
os.makedirs(self.logdir + "unitaries/", exist_ok=exist_ok)
self.store_unitaries_counter = 0
def store_Udict(self, goal):
"""
Save unitary as text and pickle.
Parameter
---------
goal: tf.float64
Value of the goal function, if used.
"""
folder = (
self.logdir
+ "unitaries/eval_"
+ str(self.store_unitaries_counter)
+ "_"
+ str(goal)
+ "/"
)
if not os.path.exists(folder):
os.mkdir(folder)
with open(folder + "Us.pickle", "wb+") as file:
pickle.dump(self.propagators, file)
for key, value in self.propagators.items():
# Windows is not able to parse ":" as file path
np.savetxt(folder + key.replace(":", ".") + ".txt", value)
def populations(self, state, lindbladian):
"""
Compute populations from a state or density vector.
Parameters
----------
state: tf.Tensor
State or densitiy vector.
lindbladian: boolean
Specify if conversion to density matrix is needed.
Returns
-------
tf.Tensor
Vector of populations.
"""
if lindbladian:
rho = tf_vec_to_dm(state)
pops = tf.math.real(tf.linalg.diag_part(rho))
return tf.reshape(pops, shape=[pops.shape[0], 1])
else:
return tf.abs(state) ** 2
def expect_oper(self, state, lindbladian, oper):
if lindbladian:
rho = tf_vec_to_dm(state)
else:
rho = tf_state_to_dm(state)
trace = np.trace(np.matmul(rho, oper))
return [[np.real(trace)]] # ,[np.imag(trace)]]
def compute_states(self, solver="rk4", step_function="schrodinger"):
"""
Use a state solver to compute the trajectory of the system.
Returns
-------
List[tf.tensor]
List of states of the system from simulation.
"""
model = self.pmap.model
generator = self.pmap.generator
instructions = self.pmap.instructions
init_state = self.pmap.model.get_init_state()
if step_function == "von_neumann":
init_state = tf_state_to_dm(init_state)
ts_init = tf.constant(0.0, dtype=tf.complex128)
state_list = tf.expand_dims(init_state, 0)
ts_list = [ts_init]
sequence = self.opt_gates
self.set_prop_method("ode_solver")
for gate in sequence:
try:
instr = instructions[gate]
except KeyError:
raise Exception(
f"C3:Error: Gate '{gate}' is not defined."
f" Available gates are:\n {list(instructions.keys())}."
)
result = self.propagation(
model,
generator,
instr,
init_state,
solver=solver,
step_function=step_function,
)
state_list = tf.concat([state_list, result["states"]], 0)
ts_list = tf.concat([ts_list, tf.add(result["ts"], ts_init)], 0)
init_state = result["states"][-1]
ts_init = result["ts"][-1]
return {"states": state_list, "ts": ts_list}
def compute_final_state(self, solver="rk4", step_function="schrodinger"):
"""
Solve the Lindblad master equation by integrating the differential
equation of the density matrix
Returns
-------
List
Final state after time evolution.
"""
model = self.pmap.model
generator = self.pmap.generator
instructions = self.pmap.instructions
init_state = self.pmap.model.get_init_state()
if step_function == "von_neumann":
init_state = tf_state_to_dm(init_state)
sequence = self.opt_gates
self.set_prop_method("ode_solver_final_state")
for gate in sequence:
try:
instr = instructions[gate]
except KeyError:
raise Exception(
f"C3:Error: Gate '{gate}' is not defined."
f" Available gates are:\n {list(instructions.keys())}."
)
result = self.propagation(
model,
generator,
instr,
init_state,
solver=solver,
step_function=step_function,
)
init_state = result["states"]
ts = result["ts"]
return {"states": result["states"], "ts": ts[-1]}