src/qutip_qip/operations/gates.py
import numbers
from packaging.version import parse as parse_version
from collections.abc import Iterable
from itertools import product
from functools import partial, reduce
from operator import mul
import warnings
import inspect
from copy import deepcopy
import numpy as np
import scipy.sparse as sp
import qutip
from qutip import Qobj, identity, qeye, sigmax, sigmay, sigmaz, tensor, fock_dm
__all__ = [
"rx",
"ry",
"rz",
"sqrtnot",
"snot",
"phasegate",
"qrot",
"x_gate",
"y_gate",
"z_gate",
"cy_gate",
"cz_gate",
"s_gate",
"t_gate",
"qasmu_gate",
"cs_gate",
"ct_gate",
"cphase",
"cnot",
"csign",
"berkeley",
"swapalpha",
"swap",
"iswap",
"sqrtswap",
"sqrtiswap",
"fredkin",
"molmer_sorensen",
"toffoli",
"rotation",
"controlled_gate",
"globalphase",
"hadamard_transform",
"qubit_clifford_group",
"expand_operator",
"gate_sequence_product",
]
#
# Single Qubit Gates
#
def _deprecation_warnings_gate_expansion():
warnings.warn(
"The expansion of output gate matrix is no longer included "
"in the gate functions. "
"To expand the output `Qobj` or permute the qubits, "
"please use expand_operator.",
DeprecationWarning,
stacklevel=2,
)
def x_gate(N=None, target=0):
"""Pauli-X gate or sigmax operator.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing
a single-qubit rotation through pi radians around the x-axis.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(x_gate(), dims=[2] * N, targets=target)
return sigmax()
def y_gate(N=None, target=0):
"""Pauli-Y gate or sigmay operator.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing
a single-qubit rotation through pi radians around the y-axis.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(y_gate(), dims=[2] * N, targets=target)
return sigmay()
def cy_gate(N=None, control=0, target=1):
"""Controlled Y gate.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing the rotation.
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
cy_gate(), dims=[2] * N, targets=(control, target)
)
return Qobj(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1j], [0, 0, 1j, 0]],
dims=[[2, 2], [2, 2]],
)
def z_gate(N=None, target=0):
"""Pauli-Z gate or sigmaz operator.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing
a single-qubit rotation through pi radians around the z-axis.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(z_gate(), dims=[2] * N, targets=target)
return sigmaz()
def cz_gate(N=None, control=0, target=1):
"""Controlled Z gate.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing the rotation.
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
cz_gate(), dims=[2] * N, targets=(control, target)
)
return Qobj(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]],
dims=[[2, 2], [2, 2]],
)
def s_gate(N=None, target=0):
"""Single-qubit rotation also called Phase gate or the Z90 gate.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing
a 90 degree rotation around the z-axis.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(s_gate(), dims=[2] * N, targets=target)
return Qobj([[1, 0], [0, 1j]])
def cs_gate(N=None, control=0, target=1):
"""Controlled S gate.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing the rotation.
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
cs_gate(), dims=[2] * N, targets=(control, target)
)
return Qobj(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1j]],
dims=[[2, 2], [2, 2]],
)
def t_gate(N=None, target=0):
"""Single-qubit rotation related to the S gate by the relationship S=T*T.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing a phase shift of pi/4.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(t_gate(), dims=[2] * N, targets=target)
return Qobj([[1, 0], [0, np.exp(1j * np.pi / 4)]])
def ct_gate(N=None, control=0, target=1):
"""Controlled T gate.
Returns
-------
result : :class:`qutip.Qobj`
Quantum object for operator describing the rotation.
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
ct_gate(), dims=[2] * N, targets=(control, target)
)
return Qobj(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, np.exp(1j * np.pi / 4)],
],
dims=[[2, 2], [2, 2]],
)
def rx(phi, N=None, target=0):
"""Single-qubit rotation for operator sigmax with angle phi.
Returns
-------
result : qobj
Quantum object for operator describing the rotation.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(rx(phi), dims=[2] * N, targets=target)
return Qobj(
[
[np.cos(phi / 2), -1j * np.sin(phi / 2)],
[-1j * np.sin(phi / 2), np.cos(phi / 2)],
]
)
def ry(phi, N=None, target=0):
"""Single-qubit rotation for operator sigmay with angle phi.
Returns
-------
result : qobj
Quantum object for operator describing the rotation.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(ry(phi), dims=[2] * N, targets=target)
return Qobj(
[
[np.cos(phi / 2), -np.sin(phi / 2)],
[np.sin(phi / 2), np.cos(phi / 2)],
]
)
def rz(phi, N=None, target=0):
"""Single-qubit rotation for operator sigmaz with angle phi.
Returns
-------
result : qobj
Quantum object for operator describing the rotation.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(rz(phi), dims=[2] * N, targets=target)
return Qobj([[np.exp(-1j * phi / 2), 0], [0, np.exp(1j * phi / 2)]])
def sqrtnot(N=None, target=0):
"""Single-qubit square root NOT gate.
Returns
-------
result : qobj
Quantum object for operator describing the square root NOT gate.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(sqrtnot(), dims=[2] * N, targets=target)
return Qobj([[0.5 + 0.5j, 0.5 - 0.5j], [0.5 - 0.5j, 0.5 + 0.5j]])
def snot(N=None, target=0):
"""Quantum object representing the SNOT (Hadamard) gate.
Returns
-------
snot_gate : qobj
Quantum object representation of SNOT gate.
Examples
--------
>>> snot() # doctest: +SKIP
Quantum object: dims=[[2], [2]], \
shape = [2, 2], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 0.70710678+0.j 0.70710678+0.j]
[ 0.70710678+0.j -0.70710678+0.j]]
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(snot(), dims=[2] * N, targets=target)
return 1 / np.sqrt(2.0) * Qobj([[1, 1], [1, -1]])
def phasegate(theta, N=None, target=0):
"""
Returns quantum object representing the phase shift gate.
Parameters
----------
theta : float
Phase rotation angle.
Returns
-------
phase_gate : qobj
Quantum object representation of phase shift gate.
Examples
--------
>>> phasegate(pi/4) # doctest: +SKIP
Quantum object: dims=[[2], [2]], \
shape = [2, 2], type='oper', dtype=Dense, isherm=False
Qobj data =
[[ 1.00000000+0.j 0.00000000+0.j ]
[ 0.00000000+0.j 0.70710678+0.70710678j]]
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(phasegate(theta), dims=[2] * N, targets=target)
return Qobj([[1, 0], [0, np.exp(1.0j * theta)]], dims=[[2], [2]])
def qrot(theta, phi, N=None, target=0):
"""
Single qubit rotation driving by Rabi oscillation with 0 detune.
Parameters
----------
phi : float
The inital phase of the rabi pulse.
theta : float
The duration of the rabi pulse.
N : int
Number of qubits in the system.
target : int
The index of the target qubit.
Returns
-------
qrot_gate : :class:`qutip.Qobj`
Quantum object representation of physical qubit rotation under
a rabi pulse.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(qrot(theta, phi), dims=[2] * N, targets=target)
return Qobj(
[
[
np.cos(theta / 2.0),
-1.0j * np.exp(-1.0j * phi) * np.sin(theta / 2.0),
],
[
-1.0j * np.exp(1.0j * phi) * np.sin(theta / 2.0),
np.cos(theta / 2.0),
],
]
)
def qasmu_gate(args, N=None, target=0):
"""
QASM U-gate as defined in the OpenQASM standard.
Parameters
----------
theta : float
The argument supplied to the last RZ rotation.
phi : float
The argument supplied to the middle RY rotation.
gamma : float
The argument supplied to the first RZ rotation.
N : int
Number of qubits in the system.
target : int
The index of the target qubit.
Returns
-------
qasmu_gate : :class:`qutip.Qobj`
Quantum object representation of the QASM U-gate as defined in the
OpenQASM standard.
"""
theta, phi, gamma = args
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
qasmu_gate([theta, phi, gamma]), dims=[2] * N, targets=target
)
return Qobj(rz(phi) * ry(theta) * rz(gamma))
#
# 2 Qubit Gates
#
def cphase(theta, N=2, control=0, target=1):
"""
Returns quantum object representing the controlled phase shift gate.
Parameters
----------
theta : float
Phase rotation angle.
N : integer
The number of qubits in the target space.
control : integer
The index of the control qubit.
target : integer
The index of the target qubit.
Returns
-------
U : qobj
Quantum object representation of controlled phase gate.
"""
if N != 2 or control != 0 or target != 1:
_deprecation_warnings_gate_expansion()
if N < 1 or target < 0 or control < 0:
raise ValueError("Minimum value: N=1, control=0 and target=0")
if control >= N or target >= N:
raise ValueError("control and target need to be smaller than N")
U_list1 = [identity(2)] * N
U_list2 = [identity(2)] * N
U_list1[control] = fock_dm(2, 1)
U_list1[target] = phasegate(theta)
U_list2[control] = fock_dm(2, 0)
U = tensor(U_list1) + tensor(U_list2)
return U
def cnot(N=None, control=0, target=1):
"""
Quantum object representing the CNOT gate.
Returns
-------
cnot_gate : qobj
Quantum object representation of CNOT gate
Examples
--------
>>> cnot() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(cnot(), dims=[2] * N, targets=(control, target))
return Qobj(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]],
dims=[[2, 2], [2, 2]],
)
def csign(N=None, control=0, target=1):
"""
Quantum object representing the CSIGN gate.
Returns
-------
csign_gate : qobj
Quantum object representation of CSIGN gate
Examples
--------
>>> csign() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j -1.+0.j]]
"""
if (control == 1 and target == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(csign(), N, (control, target))
return Qobj(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]],
dims=[[2, 2], [2, 2]],
)
def berkeley(N=None, targets=[0, 1]):
"""
Quantum object representing the Berkeley gate.
Returns
-------
berkeley_gate : qobj
Quantum object representation of Berkeley gate
Examples
--------
>>> berkeley() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ cos(pi/8).+0.j 0.+0.j 0.+0.j 0.+sin(pi/8).j]
[ 0.+0.j cos(3pi/8).+0.j 0.+sin(3pi/8).j 0.+0.j]
[ 0.+0.j 0.+sin(3pi/8).j cos(3pi/8).+0.j 0.+0.j]
[ 0.+sin(pi/8).j 0.+0.j 0.+0.j cos(pi/8).+0.j]]
"""
if (targets[0] == 1 and targets[1] == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(berkeley(), N, targets=targets)
return Qobj(
[
[np.cos(np.pi / 8), 0, 0, 1.0j * np.sin(np.pi / 8)],
[0, np.cos(3 * np.pi / 8), 1.0j * np.sin(3 * np.pi / 8), 0],
[0, 1.0j * np.sin(3 * np.pi / 8), np.cos(3 * np.pi / 8), 0],
[1.0j * np.sin(np.pi / 8), 0, 0, np.cos(np.pi / 8)],
],
dims=[[2, 2], [2, 2]],
)
def swapalpha(alpha, N=None, targets=[0, 1]):
"""
Quantum object representing the SWAPalpha gate.
Returns
-------
swapalpha_gate : qobj
Quantum object representation of SWAPalpha gate
Examples
--------
>>> swapalpha(alpha) # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.5*(1 + exp(j*pi*alpha) 0.5*(1 - exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.5*(1 - exp(j*pi*alpha) 0.5*(1 + exp(j*pi*alpha) 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]
"""
if (targets[0] == 1 and targets[1] == 0) and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(swapalpha(alpha), N, targets=targets)
return Qobj(
[
[1, 0, 0, 0],
[
0,
0.5 * (1 + np.exp(1.0j * np.pi * alpha)),
0.5 * (1 - np.exp(1.0j * np.pi * alpha)),
0,
],
[
0,
0.5 * (1 - np.exp(1.0j * np.pi * alpha)),
0.5 * (1 + np.exp(1.0j * np.pi * alpha)),
0,
],
[0, 0, 0, 1],
],
dims=[[2, 2], [2, 2]],
)
def swap(N=None, targets=[0, 1]):
"""Quantum object representing the SWAP gate.
Returns
-------
swap_gate : qobj
Quantum object representation of SWAP gate
Examples
--------
>>> swap() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(swap(), dims=[2] * N, targets=targets)
return Qobj(
[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
dims=[[2, 2], [2, 2]],
)
def iswap(N=None, targets=[0, 1]):
"""Quantum object representing the iSWAP gate.
Returns
-------
iswap_gate : qobj
Quantum object representation of iSWAP gate
Examples
--------
>>> iswap() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=False
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+1.j 0.+0.j]
[ 0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(iswap(), dims=[2] * N, targets=targets)
return Qobj(
[[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]],
dims=[[2, 2], [2, 2]],
)
def sqrtswap(N=None, targets=[0, 1]):
"""Quantum object representing the square root SWAP gate.
Returns
-------
sqrtswap_gate : qobj
Quantum object representation of square root SWAP gate
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(sqrtswap(), dims=[2] * N, targets=targets)
return Qobj(
np.array(
[
[1, 0, 0, 0],
[0, 0.5 + 0.5j, 0.5 - 0.5j, 0],
[0, 0.5 - 0.5j, 0.5 + 0.5j, 0],
[0, 0, 0, 1],
]
),
dims=[[2, 2], [2, 2]],
)
def sqrtiswap(N=None, targets=[0, 1]):
"""Quantum object representing the square root iSWAP gate.
Returns
-------
sqrtiswap_gate : qobj
Quantum object representation of square root iSWAP gate
Examples
--------
>>> sqrtiswap() # doctest: +SKIP
Quantum object: dims=[[2, 2], [2, 2]], \
shape = [4, 4], type='oper', dtype=Dense, isherm=False
Qobj data =
[[ 1.00000000+0.j 0.00000000+0.j \
0.00000000+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.70710678+0.j \
0.00000000-0.70710678j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000-0.70710678j\
0.70710678+0.j 0.00000000+0.j]
[ 0.00000000+0.j 0.00000000+0.j \
0.00000000+0.j 1.00000000+0.j]]
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(sqrtiswap(), N, targets=targets)
return Qobj(
np.array(
[
[1, 0, 0, 0],
[0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0],
[0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0],
[0, 0, 0, 1],
]
),
dims=[[2, 2], [2, 2]],
)
def molmer_sorensen(theta, phi=0.0, N=None, targets=[0, 1]):
"""
Quantum object of a Mølmer–Sørensen gate.
Parameters
----------
theta: float
The duration of the interaction pulse.
phi: float
Rotation axis. phi = 0 for XX; phi=pi for YY
N: int
Number of qubits in the system.
target: int
The indices of the target qubits.
Returns
-------
molmer_sorensen_gate : :class:`qutip.Qobj`
Quantum object representation of the Mølmer–Sørensen gate.
"""
if targets != [0, 1] and N is None:
N = 2
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
molmer_sorensen(theta, phi), dims=[2] * N, targets=targets
)
return Qobj(
[
[
np.cos(theta / 2),
0,
0,
-1j * np.exp(-1j * 2 * phi) * np.sin(theta / 2),
],
[0, np.cos(theta / 2), -1j * np.sin(theta / 2), 0],
[0, -1j * np.sin(theta / 2), np.cos(theta / 2), 0],
[
-1j * np.exp(1j * 2 * phi) * np.sin(theta / 2),
0,
0,
np.cos(theta / 2),
],
],
dims=[[2, 2], [2, 2]],
)
#
# 3 Qubit Gates
#
def fredkin(N=None, control=0, targets=[1, 2]):
"""Quantum object representing the Fredkin gate.
Returns
-------
fredkin_gate : qobj
Quantum object representation of Fredkin gate.
Examples
--------
>>> fredkin() # doctest: +SKIP
Quantum object: dims=[[2, 2, 2], [2, 2, 2]], shape = [8, 8], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]]
"""
if [control, targets[0], targets[1]] != [0, 1, 2] and N is None:
N = 3
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
fredkin(), dims=[2] * N, targets=(control,) + tuple(targets)
)
return Qobj(
[
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
],
dims=[[2, 2, 2], [2, 2, 2]],
)
def toffoli(N=None, controls=[0, 1], target=2):
"""Quantum object representing the Toffoli gate.
Returns
-------
toff_gate : qobj
Quantum object representation of Toffoli gate.
Examples
--------
>>> toffoli() # doctest: +SKIP
Quantum object: dims=[[2, 2, 2], [2, 2, 2]], shape = [8, 8], type='oper', dtype=Dense, isherm=True
Qobj data =
[[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]
"""
if [controls[0], controls[1], target] != [0, 1, 2] and N is None:
N = 3
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(
toffoli(), dims=[2] * N, targets=tuple(controls) + (target,)
)
return Qobj(
[
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0],
],
dims=[[2, 2, 2], [2, 2, 2]],
)
#
# Miscellaneous Gates
#
def rotation(op, phi, N=None, target=0):
"""Single-qubit rotation for operator op with angle phi.
Returns
-------
result : qobj
Quantum object for operator describing the rotation.
"""
if N is not None:
_deprecation_warnings_gate_expansion()
return expand_operator(rotation(op, phi), N, target)
return (-1j * op * phi / 2).expm()
def controlled_gate(
U,
controls=0,
targets=1,
N=None,
control_value=1,
):
"""
Create an N-qubit controlled gate from a single-qubit gate U with the given
control and target qubits.
Parameters
----------
U : :class:`qutip.Qobj`
An arbitrary unitary gate.
controls : list of int
The index of the first control qubit.
targets : list of int
The index of the target qubit.
N : int
The total number of qubits.
control_value : int
The decimal value of the controlled qubits that activates the gate U.
Returns
-------
result : qobj
Quantum object representing the controlled-U gate.
"""
# Compatibility
if not isinstance(targets, Iterable):
controls = [controls]
if not isinstance(targets, Iterable):
targets = [targets]
num_controls = len(controls)
num_targets = len(U.dims[0])
N = num_controls + num_targets if N is None else N
# First, assume that the last qubit is the target and control qubits are
# in the increasing order.
# The control_value is the location of this unitary.
block_matrices = [np.array([[1, 0], [0, 1]])] * 2**num_controls
block_matrices[control_value] = U.full()
from scipy.linalg import block_diag # move this to the top of the file
result = block_diag(*block_matrices)
result = Qobj(result, dims=[[2] * (num_controls + num_targets)] * 2)
# Expand it to N qubits and permute qubits labelling
if controls + targets == list(range(N)):
return result
else:
return expand_operator(result, N, targets=controls + targets)
def globalphase(theta, N=1):
"""
Returns quantum object representing the global phase shift gate.
Parameters
----------
theta : float
Phase rotation angle.
Returns
-------
phase_gate : qobj
Quantum object representation of global phase shift gate.
Examples
--------
>>> phasegate(pi/4) # doctest: +SKIP
Quantum object: dims=[[2], [2]], \
shape = [2, 2], type='oper', dtype=Dense, isherm=False
Qobj data =
[[ 0.70710678+0.70710678j 0.00000000+0.j]
[ 0.00000000+0.j 0.70710678+0.70710678j]]
"""
data = np.exp(1.0j * theta) * sp.eye(
2**N, 2**N, dtype=complex, format="csr"
)
return Qobj(data, dims=[[2] * N, [2] * N])
#
# Operation on Gates
#
def _hamming_distance(x, bits=32):
"""
Calculate the bit-wise Hamming distance of x from 0: That is, the number
1s in the integer x.
"""
tot = 0
while x:
tot += 1
x &= x - 1
return tot
def hadamard_transform(N=1):
"""Quantum object representing the N-qubit Hadamard gate.
Returns
-------
q : qobj
Quantum object representation of the N-qubit Hadamard gate.
"""
data = [[1, 1], [1, -1]]
H = Qobj(data) / np.sqrt(2)
return tensor([H] * N)
def _powers(op, N):
"""
Generator that yields powers of an operator `op`,
through to `N`.
"""
acc = qeye(op.dims[0])
yield acc
for _ in range(N - 1):
acc *= op
yield acc
def qubit_clifford_group(N=None, target=0):
"""
Generates the Clifford group on a single qubit,
using the presentation of the group given by Ross and Selinger
(http://www.mathstat.dal.ca/~selinger/newsynth/).
Parameters
----------
N : int or None
Number of qubits on which each operator is to be defined
(default: 1).
target : int
Index of the target qubit on which the single-qubit
Clifford operators are to act.
Yields
------
op : Qobj
Clifford operators, represented as Qobj instances.
"""
# The Ross-Selinger presentation of the single-qubit Clifford
# group expresses each element in the form C_{ijk} = E^i X^j S^k
# for gates E, X and S, and for i in range(3), j in range(2) and
# k in range(4).
#
# We start by defining these gates. E is defined in terms of H,
# \omega and S, so we define \omega and H first.
w = np.exp(1j * 2 * np.pi / 8)
H = snot()
X = sigmax()
S = phasegate(np.pi / 2)
E = H * (S**3) * w**3
for op in map(
partial(reduce, mul),
product(_powers(E, 3), _powers(X, 2), _powers(S, 4)),
):
# partial(reduce, mul) returns a function that takes products
# of its argument, by analogy to sum. Note that by analogy,
# sum can be written as partial(reduce, add).
# product(...) yields the Cartesian product of its arguments.
# Here, each element is a tuple (E**i, X**j, S**k) such that
# partial(reduce, mul) acting on the tuple yields E**i * X**j * S**k.
# Finally, we optionally expand the gate.
if N is not None:
yield expand_operator(op, N, target)
else:
yield op
#
# Gate Expand
#
def _check_oper_dims(oper, dims=None, targets=None):
"""
Check if the given operator is valid.
Parameters
----------
oper : :class:`qutip.Qobj`
The quantum object to be checked.
dims : list, optional
A list of integer for the dimension of each composite system.
e.g ``[2, 2, 2, 2, 2]`` for 5 qubits system.
targets : int or list of int, optional
The indices of subspace that are acted on.
"""
# if operator matches N
if not isinstance(oper, Qobj) or oper.dims[0] != oper.dims[1]:
raise ValueError(
"The operator is not an "
"Qobj with the same input and output dimensions."
)
# if operator dims matches the target dims
if dims is not None and targets is not None:
targ_dims = [dims[t] for t in targets]
if oper.dims[0] != targ_dims:
raise ValueError(
"The operator dims {} do not match "
"the target dims {}.".format(oper.dims[0], targ_dims)
)
def _targets_to_list(targets, oper=None, N=None):
"""
transform targets to a list and check validity.
Parameters
----------
targets : int or list of int
The indices of subspace that are acted on.
oper : :class:`qutip.Qobj`, optional
An operator, the type of the :class:`qutip.Qobj`
has to be an operator
and the dimension matches the tensored qubit Hilbert space
e.g. dims = ``[[2, 2, 2], [2, 2, 2]]``
N : int, optional
The number of subspace in the system.
"""
# if targets is a list of integer
if targets is None:
targets = list(range(len(oper.dims[0])))
if not hasattr(targets, "__iter__"):
targets = [targets]
if not all([isinstance(t, numbers.Integral) for t in targets]):
raise TypeError("targets should be an integer or a list of integer")
# if targets has correct length
if oper is not None:
req_num = len(oper.dims[0])
if len(targets) != req_num:
raise ValueError(
"The given operator needs {} "
"target qutbis, "
"but {} given.".format(req_num, len(targets))
)
# if targets is smaller than N
if N is not None:
if not all([t < N for t in targets]):
raise ValueError("Targets must be smaller than N={}.".format(N))
return targets
def expand_operator(
oper, N=None, targets=None, dims=None, cyclic_permutation=False, dtype=None
):
"""
Expand an operator to one that acts on a system with desired dimensions.
Parameters
----------
oper : :class:`qutip.Qobj`
An operator that act on the subsystem, has to be an operator and the
dimension matches the tensored dims Hilbert space
e.g. oper.dims = ``[[2, 3], [2, 3]]``
dims : list
A list of integer for the dimension of each composite system.
E.g ``[2, 3, 2, 3, 4]``.
targets : int or list of int
The indices of subspace that are acted on.
Permutation can also be realized by changing the orders of the indices.
N : int
Deprecated. Number of qubits. Please use `dims`.
cyclic_permutation : boolean, optional
Deprecated.
Expand for all cyclic permutation of the targets.
E.g. if ``N=3`` and `oper` is a 2-qubit operator,
the result will be a list of three operators,
each acting on qubits 0 and 1, 1 and 2, 2 and 0.
dtype : str, optional
Data type of the output `Qobj`. Only for qutip version larger than 5.
Returns
-------
expanded_oper : :class:`qutip.Qobj`
The expanded operator acting on a system with desired dimension.
Examples
--------
>>> from qutip_qip.operations import expand_operator, x_gate, cnot
>>> import qutip
>>> expand_operator(x_gate(), dims=[2,3], targets=[0]) # doctest: +NORMALIZE_WHITESPACE
Quantum object: dims=[[2, 3], [2, 3]], shape=(6, 6), type='oper', dtype=CSR, isherm=True
Qobj data =
[[0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 1.]
[1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0.]]
>>> expand_operator(cnot(), dims=[2,2,2], targets=[1, 2]) # doctest: +NORMALIZE_WHITESPACE
Quantum object: dims=[[2, 2, 2], [2, 2, 2]], shape=(8, 8), type='oper', dtype=CSR, isherm=True
Qobj data =
[[1. 0. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0. 1. 0.]]
>>> expand_operator(cnot(), dims=[2, 2, 2], targets=[2, 0]) # doctest: +NORMALIZE_WHITESPACE
Quantum object: dims=[[2, 2, 2], [2, 2, 2]], shape=(8, 8), type='oper', dtype=CSR, isherm=True
Qobj data =
[[1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 1. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 1. 0. 0. 0. 0.]]
"""
if parse_version(qutip.__version__) >= parse_version("5.dev"):
# If no data type specified, use CSR
dtype = dtype or qutip.settings.core["default_dtype"] or qutip.data.CSR
oper = oper.to(dtype)
if N is not None:
warnings.warn(
"The function expand_operator has been generalized to "
"arbitrary subsystems instead of only qubit systems."
"Please use the new signature e.g.\n"
"expand_operator(oper, dims=[2, 3, 2, 2], targets=2)",
DeprecationWarning,
)
if dims is not None and N is None:
if not isinstance(dims, Iterable):
f"dims needs to be an interable {not type(dims)}."
N = len(dims) # backward compatibility
if dims is None:
dims = [2] * N
targets = _targets_to_list(targets, oper=oper, N=N)
_check_oper_dims(oper, dims=dims, targets=targets)
# Call expand_operator for all cyclic permutation of the targets.
if cyclic_permutation:
warnings.warn(
"cyclic_permutation is deprecated, "
"please use loop through different targets manually.",
DeprecationWarning,
)
oper_list = []
for i in range(N):
new_targets = np.mod(np.array(targets) + i, N)
oper_list.append(
expand_operator(oper, N=N, targets=new_targets, dims=dims)
)
return oper_list
# Generate the correct order for permutation,
# eg. if N = 5, targets = [3,0], the order is [1,2,3,0,4].
# If the operator is cnot,
# this order means that the 3rd qubit controls the 0th qubit.
new_order = [0] * N
for i, t in enumerate(targets):
new_order[t] = i
# allocate the rest qutbits (not targets) to the empty
# position in new_order
rest_pos = [q for q in list(range(N)) if q not in targets]
rest_qubits = list(range(len(targets), N))
for i, ind in enumerate(rest_pos):
new_order[ind] = rest_qubits[i]
id_list = [identity(dims[i]) for i in rest_pos]
return tensor([oper] + id_list).permute(new_order)
def gate_sequence_product(
U_list, left_to_right=True, inds_list=None, expand=False
):
"""
Calculate the overall unitary matrix for a given list of unitary operations.
Parameters
----------
U_list: list
List of gates implementing the quantum circuit.
left_to_right: Boolean, optional
Check if multiplication is to be done from left to right.
inds_list: list of list of int, optional
If expand=True, list of qubit indices corresponding to U_list
to which each unitary is applied.
expand: Boolean, optional
Check if the list of unitaries need to be expanded to full dimension.
Returns
-------
U_overall : qobj
Unitary matrix corresponding to U_list.
overall_inds : list of int, optional
List of qubit indices on which U_overall applies.
"""
from ..circuit.circuitsimulator import (
_gate_sequence_product,
_gate_sequence_product_with_expansion,
)
if expand:
return _gate_sequence_product(U_list, inds_list)
else:
return _gate_sequence_product_with_expansion(U_list, left_to_right)