qutip/piqs/piqs.py

Summary

Maintainability
D
1 day
Test Coverage
"""Permutational Invariant Quantum Solver (PIQS)

This module calculates the Liouvillian for the dynamics of ensembles of
identical two-level systems (TLS) in the presence of local and collective
processes by exploiting permutational symmetry and using the Dicke basis.
It also allows to characterize nonlinear functions of the density matrix.
"""

# Authors: Nathan Shammah, Shahnawaz Ahmed
# Contact: nathan.shammah@gmail.com, shahnawaz.ahmed95@gmail.com

from math import factorial
from decimal import Decimal

import numpy as np
from scipy.integrate import odeint
from scipy.linalg import eigvalsh
from scipy.special import entr
from scipy.sparse import dok_matrix, block_diag, lil_matrix
from .. import (
    Qobj, spre, spost, tensor, identity, ket2dm, sigmax, sigmay, sigmaz,
    sigmap, sigmam,
)
from ..entropy import entropy_vn
from ._piqs import Dicke as _Dicke
from ._piqs import (
    jmm1_dictionary,
    _num_dicke_states,
    _num_dicke_ladders,
    get_blocks,
    j_min,
    j_vals,
)

__all__ = [
    "num_dicke_states",
    "num_dicke_ladders",
    "num_tls",
    "isdiagonal",
    "dicke_blocks",
    "dicke_blocks_full",
    "dicke_function_trace",
    "purity_dicke",
    "entropy_vn_dicke",
    "Dicke",
    "state_degeneracy",
    "m_degeneracy",
    "energy_degeneracy",
    "ap",
    "am",
    "spin_algebra",
    "jspin",
    "collapse_uncoupled",
    "dicke_basis",
    "dicke",
    "excited",
    "superradiant",
    "css",
    "ghz",
    "ground",
    "identity_uncoupled",
    "block_matrix",
    "tau_column",
    "Pim",
]


def _ensure_int(x):
    """
    Ensure that a floating-point value `x` is exactly an integer, and return it
    as an int.
    """
    out = int(x)
    if out != x:
        raise ValueError(f"{x} is not an integral value")
    return out


# Functions necessary to generate the Lindbladian/Liouvillian
def num_dicke_states(N):
    """Calculate the number of Dicke states.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    nds: int
        The number of Dicke states.
    """
    return _num_dicke_states(N)


def num_dicke_ladders(N):
    """Calculate the total number of ladders in the Dicke space.

    For a collection of N two-level systems it counts how many different
    "j" exist or the number of blocks in the block-diagonal matrix.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    Nj: int
        The number of Dicke ladders.
    """
    return _num_dicke_ladders(N)


def num_tls(nds):
    """Calculate the number of two-level systems.

    Parameters
    ----------
    nds: int
         The number of Dicke states.

    Returns
    -------
    N: int
        The number of two-level systems.
    """
    if np.sqrt(nds).is_integer():
        # N is even
        N = 2 * (np.sqrt(nds) - 1)
    else:
        # N is odd
        N = 2 * (np.sqrt(nds + 1 / 4) - 1)
    return int(N)


def isdiagonal(mat):
    """
    Check if the input matrix is diagonal.

    Parameters
    ==========
    mat: ndarray/Qobj
        A 2D numpy array

    Returns
    =======
    diag: bool
        True/False depending on whether the input matrix is diagonal.
    """
    if isinstance(mat, Qobj):
        mat = mat.full()

    return np.all(mat == np.diag(np.diagonal(mat)))


# nonlinear functions of the density matrix
def dicke_blocks(rho):
    """Create the list of blocks for block-diagonal density matrix in the Dicke
    basis.

    Parameters
    ----------
    rho : :class:`.Qobj`
        A 2D block-diagonal matrix of ones with dimension (nds,nds),
        where nds is the number of Dicke states for N two-level
        systems.

    Returns
    -------
    square_blocks: list of np.ndarray
        Give back the blocks list.

    """
    shape_dimension = rho.shape[0]
    N = num_tls(shape_dimension)
    ladders = num_dicke_ladders(N)
    # create a list with the sizes of the blocks, in order
    blocks_dimensions = int(N / 2 + 1 - 0.5 * (N % 2))
    blocks_list = [
        (2 * (i + 1 * (N % 2)) + 1 * ((N + 1) % 2))
        for i in range(blocks_dimensions)
    ]
    blocks_list = np.flip(blocks_list, 0)
    # create a list with each block matrix as element
    square_blocks = []
    block_position = 0
    for block_size in blocks_list:
        start_m = block_position
        end_m = block_position + block_size
        square_block = rho[start_m:end_m, start_m:end_m]
        block_position = block_position + block_size
        square_blocks.append(square_block)

    return square_blocks


def dicke_blocks_full(rho):
    """Give the full (2^N-dimensional) list of blocks for a Dicke-basis matrix.

    Parameters
    ----------
    rho : :class:`.Qobj`
        A 2D block-diagonal matrix of ones with dimension (nds,nds),
        where nds is the number of Dicke states for N two-level
        systems.

    Returns
    -------
    full_blocks : list
        The list of blocks expanded in the 2^N space for N qubits.

    """
    shape_dimension = rho.shape[0]
    N = num_tls(shape_dimension)
    ladders = num_dicke_ladders(N)
    # create a list with the sizes of the blocks, in order
    blocks_dimensions = int(N / 2 + 1 - 0.5 * (N % 2))
    blocks_list = [
        (2 * (i + 1 * (N % 2)) + 1 * ((N + 1) % 2))
        for i in range(blocks_dimensions)
    ]
    blocks_list = np.flip(blocks_list, 0)
    # create a list with each block matrix as element
    full_blocks = []
    k = 0
    block_position = 0
    for block_size in blocks_list:
        start_m = block_position
        end_m = block_position + block_size
        square_block = rho[start_m:end_m, start_m:end_m]
        block_position = block_position + block_size
        j = N / 2 - k
        djn = state_degeneracy(N, j)
        for block_counter in range(0, djn):
            full_blocks.append(square_block / djn)  # preserve trace
        k = k + 1
    return full_blocks


def dicke_function_trace(f, rho):
    """Calculate the trace of a function on a Dicke density matrix.
    Parameters
    ----------
    f : function
        A Taylor-expandable function of `rho`.

    rho : :class:`.Qobj`
        A density matrix in the Dicke basis.

    Returns
    -------
    res : float
        Trace of a nonlinear function on `rho`.
    """
    N = num_tls(rho.shape[0])
    blocks = dicke_blocks(rho)
    block_f = []
    degen_blocks = np.flip(j_vals(N))
    state_degeneracies = []
    for j in degen_blocks:
        dj = state_degeneracy(N, j)
        state_degeneracies.append(dj)
    eigenvals_degeneracy = []
    deg = []
    for i, block in enumerate(blocks):
        dj = state_degeneracies[i]
        normalized_block = block / dj
        eigenvals_block = eigvalsh(normalized_block)
        for val in eigenvals_block:
            eigenvals_degeneracy.append(val)
            deg.append(dj)

    eigenvalue = np.array(eigenvals_degeneracy)
    function_array = f(eigenvalue) * deg
    return sum(function_array)


def entropy_vn_dicke(rho):
    """Von Neumann Entropy of a Dicke-basis density matrix.

    Parameters
    ----------
    rho : :class:`.Qobj`
        A 2D block-diagonal matrix of ones with dimension (nds, nds),
        where nds is the number of Dicke states for N two-level
        systems.

    Returns
    -------
    entropy_dm: float
        Entropy. Use degeneracy to multiply each block.

    """
    return dicke_function_trace(entr, rho)


def purity_dicke(rho):
    """Calculate purity of a density matrix in the Dicke basis.
    It accounts for the degenerate blocks in the density matrix.

    Parameters
    ----------
    rho : :class:`.Qobj`
        Density matrix in the Dicke basis of qutip.piqs.jspin(N), for N spins.

    Returns
    -------
    purity : float
        The purity of the quantum state.
        It's 1 for pure states, 0<=purity<1 for mixed states.
    """
    f = lambda x: x * x
    return dicke_function_trace(f, rho)


class Result:
    pass


class Dicke(object):
    """The Dicke class which builds the Lindbladian and Liouvillian matrix.

    Examples
    --------
    >>> from qutip.piqs import Dicke, jspin
    >>> N = 2
    >>> jx, jy, jz = jspin(N)
    >>> jp = jspin(N, "+")
    >>> jm = jspin(N, "-")
    >>> ensemble = Dicke(N, emission=1.)
    >>> L = ensemble.liouvillian()

    Parameters
    ----------
    N: int
        The number of two-level systems.

    hamiltonian : :class:`.Qobj`
        A Hamiltonian in the Dicke basis.

        The matrix dimensions are (nds, nds),
        with nds being the number of Dicke states.
        The Hamiltonian can be built with the operators
        given by the `jspin` functions.

    emission: float
        Incoherent emission coefficient (also nonradiative emission).
        default: 0.0

    dephasing: float
        Local dephasing coefficient.
        default: 0.0

    pumping: float
        Incoherent pumping coefficient.
        default: 0.0

    collective_emission: float
        Collective (superradiant) emmission coefficient.
        default: 0.0

    collective_pumping: float
        Collective pumping coefficient.
        default: 0.0

    collective_dephasing: float
        Collective dephasing coefficient.
        default: 0.0

    Attributes
    ----------
    N: int
        The number of two-level systems.

    hamiltonian : :class:`.Qobj`
        A Hamiltonian in the Dicke basis.

        The matrix dimensions are (nds, nds),
        with nds being the number of Dicke states.
        The Hamiltonian can be built with the operators given
        by the `jspin` function in the "dicke" basis.

    emission: float
        Incoherent emission coefficient (also nonradiative emission).
        default: 0.0

    dephasing: float
        Local dephasing coefficient.
        default: 0.0

    pumping: float
        Incoherent pumping coefficient.
        default: 0.0

    collective_emission: float
        Collective (superradiant) emmission coefficient.
        default: 0.0

    collective_dephasing: float
        Collective dephasing coefficient.
        default: 0.0

    collective_pumping: float
        Collective pumping coefficient.
        default: 0.0

    nds: int
        The number of Dicke states.

    dshape: tuple
        The shape of the Hilbert space in the Dicke or uncoupled basis.
        default: (nds, nds).
    """

    def __init__(
        self,
        N,
        hamiltonian=None,
        emission=0.0,
        dephasing=0.0,
        pumping=0.0,
        collective_emission=0.0,
        collective_dephasing=0.0,
        collective_pumping=0.0,
    ):
        self.N = N
        self.hamiltonian = hamiltonian
        self.emission = emission
        self.dephasing = dephasing
        self.pumping = pumping
        self.collective_emission = collective_emission
        self.collective_dephasing = collective_dephasing
        self.collective_pumping = collective_pumping
        self.nds = num_dicke_states(self.N)
        self.dshape = (num_dicke_states(self.N), num_dicke_states(self.N))

    def __repr__(self):
        """Print the current parameters of the system."""
        string = []
        string.append("N = {}".format(self.N))
        string.append("Hilbert space dim = {}".format(self.dshape))
        string.append("Number of Dicke states = {}".format(self.nds))
        string.append(
            "Liouvillian space dim = {}".format((self.nds ** 2, self.nds ** 2))
        )
        if self.emission != 0:
            string.append("emission = {}".format(self.emission))
        if self.dephasing != 0:
            string.append("dephasing = {}".format(self.dephasing))
        if self.pumping != 0:
            string.append("pumping = {}".format(self.pumping))
        if self.collective_emission != 0:
            string.append(
                "collective_emission = {}".format(self.collective_emission)
            )
        if self.collective_dephasing != 0:
            string.append(
                "collective_dephasing = {}".format(self.collective_dephasing)
            )
        if self.collective_pumping != 0:
            string.append(
                "collective_pumping = {}".format(self.collective_pumping)
            )
        return "\n".join(string)

    def lindbladian(self):
        """Build the Lindbladian superoperator of the dissipative dynamics.

        Returns
        -------
        lindbladian : :class:`.Qobj`
            The Lindbladian matrix as a `qutip.Qobj`.
        """
        cythonized_dicke = _Dicke(
            int(self.N),
            float(self.emission),
            float(self.dephasing),
            float(self.pumping),
            float(self.collective_emission),
            float(self.collective_dephasing),
            float(self.collective_pumping),
        )
        return cythonized_dicke.lindbladian()

    def liouvillian(self):
        """Build the total Liouvillian using the Dicke basis.

        Returns
        -------
        liouv : :class:`.Qobj`
            The Liouvillian matrix for the system.
        """
        lindblad = self.lindbladian()
        if self.hamiltonian is None:
            liouv = lindblad

        else:
            hamiltonian = self.hamiltonian
            hamiltonian_superoperator = -1j * spre(hamiltonian) + 1j * spost(
                hamiltonian
            )
            liouv = lindblad + hamiltonian_superoperator
        return liouv

    def pisolve(self, initial_state, tlist):
        """
        Solve for diagonal Hamiltonians and initial states faster.

        Parameters
        ==========
        initial_state : :class:`.Qobj`
            An initial state specified as a density matrix of
            `qutip.Qbj` type.

        tlist: ndarray
            A 1D numpy array of list of timesteps to integrate

        Returns
        =======
        result: list
            A dictionary of the type `qutip.piqs.Result` which holds the
            results of the evolution.
        """
        if isdiagonal(initial_state) == False:
            msg = "`pisolve` requires a diagonal initial density matrix. "
            msg += "In general construct the Liouvillian using "
            msg += "`piqs.liouvillian` and use qutip.mesolve."
            raise ValueError(msg)

        if self.hamiltonian and isdiagonal(self.hamiltonian) == False:
            msg = "`pisolve` should only be used for diagonal Hamiltonians. "
            msg += "Construct the Liouvillian using `piqs.liouvillian` and"
            msg += "  use `qutip.mesolve`."
            raise ValueError(msg)

        if initial_state.full().shape != self.dshape:
            msg = "Initial density matrix should be diagonal."
            raise ValueError(msg)

        pim = Pim(
            self.N,
            self.emission,
            self.dephasing,
            self.pumping,
            self.collective_emission,
            self.collective_pumping,
            self.collective_dephasing,
        )
        result = pim.solve(initial_state, tlist)
        return result

    def c_ops(self):
        """Build collapse operators in the full Hilbert space 2^N.

        Returns
        -------
        c_ops_list: list
            The list with the collapse operators in the 2^N Hilbert space.
        """
        ce = self.collective_emission
        cd = self.collective_dephasing
        cp = self.collective_pumping
        c_ops_list = collapse_uncoupled(
            N=self.N,
            emission=self.emission,
            dephasing=self.dephasing,
            pumping=self.pumping,
            collective_emission=ce,
            collective_dephasing=cd,
            collective_pumping=cp,
        )
        return c_ops_list

    def coefficient_matrix(self):
        """Build coefficient matrix for ODE for a diagonal problem.

        Returns
        -------
        M: ndarray
            The matrix M of the coefficients for the ODE dp/dt = Mp.
            p is the vector of the diagonal matrix elements
            of the density matrix rho in the Dicke basis.
        """
        diagonal_system = Pim(
            N=self.N,
            emission=self.emission,
            dephasing=self.dephasing,
            pumping=self.pumping,
            collective_emission=self.collective_emission,
            collective_dephasing=self.collective_dephasing,
            collective_pumping=self.collective_pumping,
        )
        coef_matrix = diagonal_system.coefficient_matrix()
        return coef_matrix


# Utility functions for properties of the Dicke space
def energy_degeneracy(N, m):
    """Calculate the number of Dicke states with same energy.

    The use of the ``Decimals`` class allows to explore N > 1000,
    unlike the built-in function ``scipy.special.binom``.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    m: float
        Total spin z-axis projection eigenvalue.
        This is proportional to the total energy.

    Returns
    -------
    degeneracy: int
        The energy degeneracy
    """
    numerator = Decimal(factorial(N))
    d1 = Decimal(factorial(_ensure_int(N / 2 + m)))
    d2 = Decimal(factorial(_ensure_int(N / 2 - m)))
    degeneracy = numerator / (d1 * d2)
    return int(degeneracy)


def state_degeneracy(N, j):
    r"""Calculate the degeneracy of the Dicke state.

    Each state :math:`\lvert j, m\rangle` includes D(N,j) irreducible
    representations :math:`\lvert j, m, \alpha\rangle`.

    Uses Decimals to calculate higher numerator and denominators numbers.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    j: float
        Total spin eigenvalue (cooperativity).

    Returns
    -------
    degeneracy: int
        The state degeneracy.
    """
    if j < 0:
        raise ValueError("j value should be >= 0")
    numerator = Decimal(factorial(N)) * Decimal(2 * j + 1)
    denominator_1 = Decimal(factorial(_ensure_int(N / 2 + j + 1)))
    denominator_2 = Decimal(factorial(_ensure_int(N / 2 - j)))
    degeneracy = numerator / (denominator_1 * denominator_2)
    degeneracy = int(np.round(float(degeneracy)))
    return degeneracy


def m_degeneracy(N, m):
    r"""Calculate the number of Dicke states :math:`\lvert j, m\rangle` with
    same energy.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    m: float
        Total spin z-axis projection eigenvalue (proportional to the total
        energy).

    Returns
    -------
    degeneracy: int
        The m-degeneracy.
    """
    jvals = j_vals(N)
    maxj = np.max(jvals)
    if m < -maxj:
        e = "m value is incorrect for this N."
        e += " Minimum m value can be {}".format(-maxj)
        raise ValueError(e)
    degeneracy = N / 2 + 1 - abs(m)
    return int(degeneracy)


def ap(j, m):
    r"""
    Calculate the coefficient ``ap`` by applying :math:`J_+\lvert j,m\rangle`.

    The action of ap is given by:
    :math:`J_{+}\lvert j, m\rangle = A_{+}(j, m) \lvert j, m+1\rangle`

    Parameters
    ----------
    j, m: float
        The value for j and m in the dicke basis :math:`\lvert j, m\rangle`.

    Returns
    -------
    a_plus: float
        The value of :math:`a_{+}`.
    """
    a_plus = np.sqrt((j - m) * (j + m + 1))
    return a_plus


def am(j, m):
    r"""Calculate the operator ``am`` used later.

    The action of ``ap`` is given by:
    :math:`J_{-}\lvert j,m\rangle = A_{-}(jm)\lvert j,m-1\rangle`

    Parameters
    ----------
    j: float
        The value for j.

    m: float
        The value for m.

    Returns
    -------
    a_minus: float
        The value of :math:`a_{-}`.
    """
    a_minus = np.sqrt((j + m) * (j - m + 1))
    return a_minus


def spin_algebra(N, op=None):
    """Create the list [sx, sy, sz] with the spin operators.

    The operators are constructed for a collection of N two-level systems
    (TLSs). Each element of the list, i.e., sx, is a vector of `qutip.Qobj`
    objects (spin matrices), as it cointains the list of the SU(2) Pauli
    matrices for the N TLSs. Each TLS operator sx[i], with i = 0, ..., (N-1),
    is placed in a :math:`2^N`-dimensional Hilbert space.

    Notes
    -----
    sx[i] is :math:`\\frac{\\sigma_x}{2}` in the composite Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    spin_operators: list or :class:`.Qobj`
        A list of `qutip.Qobj` operators - [sx, sy, sz] or the
        requested operator.
    """
    # 1. Define N TLS spin-1/2 matrices in the uncoupled basis
    N = int(N)
    sx = [0 for i in range(N)]
    sy = [0 for i in range(N)]
    sz = [0 for i in range(N)]
    sp = [0 for i in range(N)]
    sm = [0 for i in range(N)]

    sx[0] = 0.5 * sigmax()
    sy[0] = 0.5 * sigmay()
    sz[0] = 0.5 * sigmaz()
    sp[0] = sigmap()
    sm[0] = sigmam()

    # 2. Place operators in total Hilbert space
    for k in range(N - 1):
        sx[0] = tensor(sx[0], identity(2))
        sy[0] = tensor(sy[0], identity(2))
        sz[0] = tensor(sz[0], identity(2))
        sp[0] = tensor(sp[0], identity(2))
        sm[0] = tensor(sm[0], identity(2))

    # 3. Cyclic sequence to create all N operators
    a = [i for i in range(N)]
    b = [[a[i - i2] for i in range(N)] for i2 in range(N)]

    # 4. Create N operators
    for i in range(1, N):
        sx[i] = sx[0].permute(b[i])
        sy[i] = sy[0].permute(b[i])
        sz[i] = sz[0].permute(b[i])
        sp[i] = sp[0].permute(b[i])
        sm[i] = sm[0].permute(b[i])

    spin_operators = [sx, sy, sz]

    if not op:
        return spin_operators
    elif op == "x":
        return sx
    elif op == "y":
        return sy
    elif op == "z":
        return sz
    elif op == "+":
        return sp
    elif op == "-":
        return sm
    else:
        raise TypeError("Invalid type")


def _jspin_uncoupled(N, op=None):
    """Construct the the collective spin algebra in the uncoupled basis.

    jx, jy, jz, jp, jm are constructed in the uncoupled basis of the
    two-level system (TLS). Each collective operator is placed in a
    Hilbert space of dimension 2^N.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    op: str
        The operator to return 'x','y','z','+','-'.
        If no operator given, then output is the list of operators
        for ['x','y','z',].

    Returns
    -------
    collective_operators: list or :class:`.Qobj`
        A list of `qutip.Qobj` representing all the operators in
        uncoupled" basis or a single operator requested.
    """
    # 1. Define N TLS spin-1/2 matrices in the uncoupled basis
    N = int(N)

    sx, sy, sz = spin_algebra(N)
    sp, sm = spin_algebra(N, "+"), spin_algebra(N, "-")

    jx = sum(sx)
    jy = sum(sy)
    jz = sum(sz)
    jp = sum(sp)
    jm = sum(sm)

    collective_operators = [jx, jy, jz]

    if not op:
        return collective_operators
    elif op == "x":
        return jx
    elif op == "y":
        return jy
    elif op == "z":
        return jz
    elif op == "+":
        return jp
    elif op == "-":
        return jm
    else:
        raise TypeError("Invalid type")


def jspin(N, op=None, basis="dicke"):
    r"""
    Calculate the list of collective operators of the total algebra.

    The Dicke basis :math:`\lvert j,m\rangle\langle j,m'\rvert` is used by
    default. Otherwise with "uncoupled" the operators are in a
    :math:`2^N` space.

    Parameters
    ----------
    N: int
        Number of two-level systems.

    op: str {'x', 'y', 'z', '+', '-'}, optional
        The operator to return 'x','y','z','+','-'.
        If no operator given, then output is the list of operators
        for ['x','y','z'].

    basis: str {"dicke", "uncoupled"}, default: "dicke"
        The basis of the operators.

    Returns
    -------
    j_alg: list or :class:`.Qobj`
        A list of `qutip.Qobj` representing all the operators in
        the "dicke" or "uncoupled" basis or a single operator requested.
    """
    if basis == "uncoupled":
        return _jspin_uncoupled(N, op)

    nds = num_dicke_states(N)
    num_ladders = num_dicke_ladders(N)
    jz_operator = dok_matrix((nds, nds), dtype=np.complex128)
    jp_operator = dok_matrix((nds, nds), dtype=np.complex128)
    jm_operator = dok_matrix((nds, nds), dtype=np.complex128)
    s = 0

    for k in range(0, num_ladders):
        j = 0.5 * N - k
        mmax = int(2 * j + 1)
        for i in range(0, mmax):
            m = j - i
            jz_operator[s, s] = m
            if (s + 1) in range(0, nds):
                jp_operator[s, s + 1] = ap(j, m - 1)
            if (s - 1) in range(0, nds):
                jm_operator[s, s - 1] = am(j, m + 1)
            s = s + 1

    jx_operator = 1 / 2 * (jp_operator + jm_operator)
    jy_operator = 1j / 2 * (jm_operator - jp_operator)
    jx = Qobj(jx_operator)
    jy = Qobj(jy_operator)
    jz = Qobj(jz_operator)
    jp = Qobj(jp_operator)
    jm = Qobj(jm_operator)

    if not op:
        return [jx, jy, jz]
    if op == "+":
        return jp
    elif op == "-":
        return jm
    elif op == "x":
        return jx
    elif op == "y":
        return jy
    elif op == "z":
        return jz
    else:
        raise TypeError("Invalid type")


def collapse_uncoupled(
    N,
    emission=0.0,
    dephasing=0.0,
    pumping=0.0,
    collective_emission=0.0,
    collective_dephasing=0.0,
    collective_pumping=0.0,
):
    """
    Create the collapse operators (c_ops) of the Lindbladian in the
    uncoupled basis

    These operators are in the uncoupled basis of the two-level
    system (TLS) SU(2) Pauli matrices.

    Notes
    -----
    The collapse operator list can be given to `qutip.mesolve`.
    Notice that the operators are placed in a Hilbert space of
    dimension :math:`2^N`. Thus the method is suitable only for
    small N (of the order of 10).

    Parameters
    ----------
    N: int
        The number of two-level systems.

    emission: float, default: 0.0
        Incoherent emission coefficient (also nonradiative emission).


    dephasing: float, default: 0.0
        Local dephasing coefficient.

    pumping: float, default: 0.0
        Incoherent pumping coefficient.

    collective_emission: float, default: 0.0
        Collective (superradiant) emmission coefficient.

    collective_pumping: float, default: 0.0
        Collective pumping coefficient.

    collective_dephasing: float, default: 0.0
        Collective dephasing coefficient.

    Returns
    -------
    c_ops: list
        The list of collapse operators as :obj:`.Qobj` for the system.
    """
    N = int(N)

    if N > 10:
        msg = "N > 10. dim(H) = 2^N. "
        msg += "Better use `piqs.lindbladian` to reduce Hilbert space "
        msg += "dimension and exploit permutational symmetry."
        raise Warning(msg)

    [sx, sy, sz] = spin_algebra(N)
    sp, sm = spin_algebra(N, "+"), spin_algebra(N, "-")
    [jx, jy, jz] = jspin(N, basis="uncoupled")
    jp, jm = (
        jspin(N, "+", basis="uncoupled"),
        jspin(N, "-", basis="uncoupled"),
    )

    c_ops = []

    if emission != 0:
        for i in range(0, N):
            c_ops.append(np.sqrt(emission) * sm[i])

    if dephasing != 0:
        for i in range(0, N):
            c_ops.append(np.sqrt(dephasing) * sz[i])

    if pumping != 0:
        for i in range(0, N):
            c_ops.append(np.sqrt(pumping) * sp[i])

    if collective_emission != 0:
        c_ops.append(np.sqrt(collective_emission) * jm)

    if collective_dephasing != 0:
        c_ops.append(np.sqrt(collective_dephasing) * jz)

    if collective_pumping != 0:
        c_ops.append(np.sqrt(collective_pumping) * jp)

    return c_ops


# State definitions in the Dicke basis with an option for basis transformation
def dicke_basis(N, jmm1):
    r"""
    Initialize the density matrix of a Dicke state for several (j, m, m1).

    This function can be used to build arbitrary states in the Dicke basis
    :math:`\lvert j, m\rangle\langle j, m'\rvert`. We create coefficients for
    each (j, m, m1) value in the dictionary jmm1. The mapping for the (i, k)
    index of the density matrix to the :math:`\lvert j, m\rangle` values is
    given by the cythonized function `jmm1_dictionary`. A density matrix is
    created from the given dictionary of coefficients for each (j, m, m1).

    Parameters
    ----------
    N: int
        The number of two-level systems.

    jmm1: dict
        A dictionary of {(j, m, m1): p} that gives a density p for the
        (j, m, m1) matrix element.

    Returns
    -------
    rho: :class:`.Qobj`
        The density matrix in the Dicke basis.
    """
    if not isinstance(jmm1, dict):
        msg = "Please specify the jmm1 values as a dictionary"
        msg += "or use the `excited(N)` function to create an"
        msg += "excited state where jmm1 = {(N/2, N/2, N/2): 1}"
        raise AttributeError(msg)

    nds = _num_dicke_states(N)
    rho = np.zeros((nds, nds))
    jmm1_dict = jmm1_dictionary(N)[1]
    for key in jmm1:
        i, k = jmm1_dict[key]
        rho[i, k] = jmm1[key]
    return Qobj(rho)


def dicke(N, j, m):
    r"""
    Generate a Dicke state as a pure density matrix in the Dicke basis.

    For instance, the superradiant state given by
    :math:`\lvert  j, m\rangle = \lvert 1, 0\rangle` for N = 2,
    and the state is represented as a density matrix of size (nds, nds) or
    (4, 4), with the (1, 1) element set to 1.


    Parameters
    ----------
    N: int
        The number of two-level systems.

    j: float
        The eigenvalue j of the Dicke state (j, m).

    m: float
        The eigenvalue m of the Dicke state (j, m).

    Returns
    -------
    rho: :class:`.Qobj`
        The density matrix.
    """
    nds = num_dicke_states(N)
    rho = np.zeros((nds, nds))

    jmm1_dict = jmm1_dictionary(N)[1]

    i, k = jmm1_dict[(j, m, m)]
    rho[i, k] = 1.0
    return Qobj(rho)


# Uncoupled states in the full Hilbert space. These are returned with the
# choice of the keyword argument `basis="uncoupled"` in the state functions.
def _uncoupled_excited(N):
    """
    Generate the density matrix of the excited Dicke state in the full
    :math:`2^N` dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    psi0: :class:`.Qobj`
        The density matrix for the excited state in the uncoupled basis.
    """
    N = int(N)
    jz = jspin(N, "z", basis="uncoupled")
    en, vn = jz.eigenstates()
    psi0 = vn[2 ** N - 1]
    return ket2dm(psi0)


def _uncoupled_superradiant(N):
    """
    Generate the density matrix of a superradiant state in the full
    :math:`2^N`-dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    psi0: :class:`.Qobj`
        The density matrix for the superradiant state in the full Hilbert
        space.
    """
    N = int(N)
    jz = jspin(N, "z", basis="uncoupled")
    en, vn = jz.eigenstates()
    psi0 = vn[2 ** N - (N + 1)]
    return ket2dm(psi0)


def _uncoupled_ground(N):
    """
    Generate the density matrix of the ground state in the full\
    :math:`2^N`-dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    psi0: :class:`.Qobj`
        The density matrix for the ground state in the full Hilbert space.
    """
    N = int(N)
    jz = jspin(N, "z", basis="uncoupled")
    en, vn = jz.eigenstates()
    psi0 = vn[0]
    return ket2dm(psi0)


def _uncoupled_ghz(N):
    """
    Generate the density matrix of the GHZ state in the full 2^N
    dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    ghz: :class:`.Qobj`
        The density matrix for the GHZ state in the full Hilbert space.
    """
    N = int(N)
    rho = np.zeros((2 ** N, 2 ** N))
    rho[0, 0] = 1 / 2
    rho[2 ** N - 1, 0] = 1 / 2
    rho[0, 2 ** N - 1] = 1 / 2
    rho[2 ** N - 1, 2 ** N - 1] = 1 / 2
    spin_dim = [2 for i in range(0, N)]
    spins_dims = list((spin_dim, spin_dim))
    rho = Qobj(rho, dims=spins_dims)
    return rho


def _uncoupled_css(N, a, b):
    r"""
    Generate the density matrix of the CSS state in the full 2^N
    dimensional Hilbert space.

    The CSS states are non-entangled states given by
    :math:`\lvert a,b\rangle = \prod_i(a\lvert1\rangle_i + b\lvert0\rangle_i)`.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    a: complex
        The coefficient of the :math:`\lvert1_i\rangle` state.

    b: complex
        The coefficient of the :math:`\lvert0_i\rangle` state.

    Returns
    -------
    css: :class:`.Qobj`
        The density matrix for the CSS state in the full Hilbert space.
    """
    N = int(N)
    # 1. Define i_th factorized density matrix in the uncoupled basis
    rho_i = np.zeros((2, 2), dtype=complex)
    rho_i[0, 0] = a * np.conj(a)
    rho_i[1, 1] = b * np.conj(b)
    rho_i[0, 1] = a * np.conj(b)
    rho_i[1, 0] = b * np.conj(a)
    rho_i = Qobj(rho_i)
    rho = [0 for i in range(N)]
    rho[0] = rho_i
    # 2. Place single-two-level-system density matrices in total Hilbert space
    for k in range(N - 1):
        rho[0] = tensor(rho[0], identity(2))
    # 3. Cyclic sequence to create all N factorized density matrices
    # |CSS>_i<CSS|_i
    a = [i for i in range(N)]
    b = [[a[i - i2] for i in range(N)] for i2 in range(N)]
    # 4. Create all other N-1 factorized density matrices
    # |+><+| = Prod_(i=1)^N |CSS>_i<CSS|_i
    for i in range(1, N):
        rho[i] = rho[0].permute(b[i])
    identity_i = Qobj(np.eye(2 ** N), dims=rho[0].dims)
    rho_tot = identity_i
    for i in range(0, N):
        rho_tot = rho_tot * rho[i]
    return rho_tot


def excited(N, basis="dicke"):
    """
    Generate the density matrix for the excited state.

    This state is given by (N/2, N/2) in the default Dicke basis. If the
    argument ``basis`` is "uncoupled" then it generates the state in a
    2**N dim Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    basis: str, {"dicke", "uncoupled"}, default: "dicke"
        The basis to use.

    Returns
    -------
    state: :class:`.Qobj`
        The excited state density matrix in the requested basis.
    """
    if basis == "uncoupled":
        state = _uncoupled_excited(N)
        return state

    jmm1 = {(N / 2, N / 2, N / 2): 1}
    return dicke_basis(N, jmm1)


def superradiant(N, basis="dicke"):
    """
    Generate the density matrix of the superradiant state.

    This state is given by (N/2, 0) or (N/2, 0.5) in the Dicke basis.
    If the argument `basis` is "uncoupled" then it generates the state
    in a 2**N dim Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    basis: str, {"dicke", "uncoupled"}, default: "dicke"
        The basis to use.

    Returns
    -------
    state: :class:`.Qobj`
        The superradiant state density matrix in the requested basis.
    """
    if basis == "uncoupled":
        state = _uncoupled_superradiant(N)
        return state

    if N % 2 == 0:
        jmm1 = {(N / 2, 0, 0): 1.0}
        return dicke_basis(N, jmm1)
    else:
        jmm1 = {(N / 2, 0.5, 0.5): 1.0}
    return dicke_basis(N, jmm1)


def css(
    N,
    x=1 / np.sqrt(2),
    y=1 / np.sqrt(2),
    basis="dicke",
    coordinates="cartesian",
):
    r"""
    Generate the density matrix of the Coherent Spin State (CSS).

    It can be defined as,
    :math:`\lvert CSS\rangle = \prod_i^N(a\lvert1\rangle_i+b\lvert0\rangle_i)`
    with :math:`a = sin(\frac{\theta}{2})`,
    :math:`b = e^{i \phi}\cos(\frac{\theta}{2})`.
    The default basis is that of Dicke space
    :math:`\lvert j, m\rangle \langle j, m'\rvert`.
    The default state is the symmetric CSS,
    :math:`\lvert CSS\rangle = \lvert+\rangle`.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    x, y: float, default: sqrt(1/2)
        The coefficients of the CSS state.

    basis: str {"dicke", "uncoupled"}, default: "dicke"
        The basis to use.

    coordinates: str {"cartesian", "polar"}, default: "cartesian"
        If polar then the coefficients are constructed as
        :math:`sin(x/2), cos(x/2)e^(iy)``.

    Returns
    -------
    rho: :class:`.Qobj`
        The CSS state density matrix.
    """
    if coordinates == "polar":
        a = np.cos(0.5 * x) * np.exp(1j * y)
        b = np.sin(0.5 * x)
    else:
        a = x
        b = y
    if basis == "uncoupled":
        return _uncoupled_css(N, a, b)
    nds = num_dicke_states(N)
    num_ladders = num_dicke_ladders(N)
    rho = dok_matrix((nds, nds), dtype=np.complex128)

    # loop in the allowed matrix elements
    jmm1_dict = jmm1_dictionary(N)[1]

    j = 0.5 * N
    mmax = int(2 * j + 1)
    for i in range(0, mmax):
        m = j - i
        psi_m = (
            np.sqrt(float(energy_degeneracy(N, m)))
            * a ** (N * 0.5 + m)
            * b ** (N * 0.5 - m)
        )
        for i1 in range(0, mmax):
            m1 = j - i1
            row_column = jmm1_dict[(j, m, m1)]
            psi_m1 = (
                np.sqrt(float(energy_degeneracy(N, m1)))
                * np.conj(a) ** (N * 0.5 + m1)
                * np.conj(b) ** (N * 0.5 - m1)
            )
            rho[row_column] = psi_m * psi_m1
    return Qobj(rho)


def ghz(N, basis="dicke"):
    """
    Generate the density matrix of the GHZ state.

    If the argument ``basis`` is "uncoupled" then it generates the state
    in a :math:`2^N`-dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    basis: str, {"dicke", "uncoupled"}, default: "dicke"
        The basis to use.

    Returns
    -------
    state: :class:`.Qobj`
        The GHZ state density matrix in the requested basis.
    """
    if basis == "uncoupled":
        return _uncoupled_ghz(N)
    nds = _num_dicke_states(N)
    rho = dok_matrix((nds, nds), dtype=np.complex128)
    rho[0, 0] = 1 / 2
    rho[N, N] = 1 / 2
    rho[N, 0] = 1 / 2
    rho[0, N] = 1 / 2
    return Qobj(rho)


def ground(N, basis="dicke"):
    """
    Generate the density matrix of the ground state.

    This state is given by (N/2, -N/2) in the Dicke basis. If the argument
    ``basis`` is "uncoupled" then it generates the state in a
    :math:`2^N`-dimensional Hilbert space.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    basis: str, {"dicke", "uncoupled"}, default: "dicke"
        The basis to use.

    Returns
    -------
    state: :class:`.Qobj`
        The ground state density matrix in the requested basis.
    """
    if basis == "uncoupled":
        state = _uncoupled_ground(N)
        return state
    nds = _num_dicke_states(N)
    rho = dok_matrix((nds, nds), dtype=np.complex128)
    rho[N, N] = 1
    return Qobj(rho)


def identity_uncoupled(N):
    """
    Generate the identity in a :math:`2^N`-dimensional Hilbert space.

    The identity matrix is formed from the tensor product of N TLSs.

    Parameters
    ----------
    N: int
        The number of two-level systems.

    Returns
    -------
    identity: :class:`.Qobj`
        The identity matrix.
    """
    N = int(N)
    rho = np.zeros((2 ** N, 2 ** N))
    for i in range(0, 2 ** N):
        rho[i, i] = 1
    spin_dim = [2 for i in range(0, N)]
    spins_dims = list((spin_dim, spin_dim))
    identity = Qobj(rho, dims=spins_dims)
    return identity


def block_matrix(N, elements="ones"):
    """Construct the block-diagonal matrix for the Dicke basis.

    Parameters
    ----------
    N : int
        Number of two-level systems.
    elements : str {'ones', 'degeneracy'}, default: 'ones'

    Returns
    -------
    block_matr : ndarray
        A 2D block-diagonal matrix with dimension (nds,nds),
        where nds is the number of Dicke states for N two-level
        systems. Filled with ones or the value of degeneracy
        at each matrix element.
    """
    # create a list with the sizes of the blocks, in order
    blocks_dimensions = int(N / 2 + 1 - 0.5 * (N % 2))
    blocks_list = [
        (2 * (i + 1 * (N % 2)) + 1 * ((N + 1) % 2))
        for i in range(blocks_dimensions)
    ]
    blocks_list = np.flip(blocks_list, 0)
    # create a list with each block matrix as element
    square_blocks = []
    k = 0
    for i in blocks_list:
        if elements == "ones":
            square_blocks.append(np.ones((i, i)))
        elif elements == "degeneracy":
            j = N / 2 - k
            dj = state_degeneracy(N, j)
            square_blocks.append(dj * np.ones((i, i)))
        k = k + 1
    return block_diag(square_blocks)


# ============================================================================
# Adding a faster version to make a Permutational Invariant matrix
# ============================================================================
def tau_column(tau, k, j):
    """
    Determine the column index for the non-zero elements of the matrix for a
    particular row `k` and the value of `j` from the Dicke space.

    Parameters
    ----------
    tau: str
        The tau function to check for this `k` and `j`.

    k: int
        The row of the matrix M for which the non zero elements have
        to be calculated.

    j: float
        The value of `j` for this row.
    """
    # In the notes, we indexed from k = 1, here we do it from k = 0
    k = k + 1
    mapping = {
        "tau3": k - (2 * j + 3),
        "tau2": k - 1,
        "tau4": k + (2 * j - 1),
        "tau5": k - (2 * j + 2),
        "tau1": k,
        "tau6": k + (2 * j),
        "tau7": k - (2 * j + 1),
        "tau8": k + 1,
        "tau9": k + (2 * j + 1),
    }
    # we need to decrement k again as indexing is from 0
    return int(mapping[tau] - 1)


class Pim(object):
    """
    The Permutation Invariant Matrix class.

    Initialize the class with the parameters for generating a Permutation
    Invariant matrix which evolves a given diagonal initial state `p` as:

                                dp/dt = Mp

    Parameters
    ----------
    N: int
        The number of two-level systems.

    emission: float
        Incoherent emission coefficient (also nonradiative emission).
        default: 0.0

    dephasing: float
        Local dephasing coefficient.
        default: 0.0

    pumping: float
        Incoherent pumping coefficient.
        default: 0.0

    collective_emission: float
        Collective (superradiant) emmission coefficient.
        default: 0.0

    collective_pumping: float
        Collective pumping coefficient.
        default: 0.0

    collective_dephasing: float
        Collective dephasing coefficient.
        default: 0.0

    Attributes
    ----------
    N: int
        The number of two-level systems.

    emission: float
        Incoherent emission coefficient (also nonradiative emission).
        default: 0.0

    dephasing: float
        Local dephasing coefficient.
        default: 0.0

    pumping: float
        Incoherent pumping coefficient.
        default: 0.0

    collective_emission: float
        Collective (superradiant) emmission coefficient.
        default: 0.0

    collective_dephasing: float
        Collective dephasing coefficient.
        default: 0.0

    collective_pumping: float
        Collective pumping coefficient.
        default: 0.0

    M: dict
        A nested dictionary of the structure {row: {col: val}} which holds
        non zero elements of the matrix M
    """

    def __init__(
        self,
        N,
        emission=0.0,
        dephasing=0,
        pumping=0,
        collective_emission=0,
        collective_pumping=0,
        collective_dephasing=0,
    ):
        self.N = N
        self.emission = emission
        self.dephasing = dephasing
        self.pumping = pumping
        self.collective_pumping = collective_pumping
        self.collective_dephasing = collective_dephasing
        self.collective_emission = collective_emission
        self.M = {}

    def isdicke(self, dicke_row, dicke_col):
        """
        Check if an element in a matrix is a valid element in the Dicke space.
        Dicke row: j value index. Dicke column: m value index.
        The function returns True if the element exists in the Dicke space and
        False otherwise.

        Parameters
        ----------
        dicke_row, dicke_col : int
            Index of the element in Dicke space which needs to be checked
        """
        rows = self.N + 1
        cols = 0

        if (self.N % 2) == 0:
            cols = int(self.N / 2 + 1)
        else:
            cols = int(self.N / 2 + 1 / 2)
        if (dicke_row > rows) or (dicke_row < 0):
            return False
        if (dicke_col > cols) or (dicke_col < 0):
            return False
        if (dicke_row < int(rows / 2)) and (dicke_col > dicke_row):
            return False
        if (dicke_row >= int(rows / 2)) and (rows - dicke_row <= dicke_col):
            return False
        else:
            return True

    def tau_valid(self, dicke_row, dicke_col):
        """
        Find the Tau functions which are valid for this value of (dicke_row,
        dicke_col) given the number of TLS. This calculates the valid tau
        values and reurns a dictionary specifying the tau function name and
        the value.

        Parameters
        ----------
        dicke_row, dicke_col : int
            Index of the element in Dicke space which needs to be checked.

        Returns
        -------
        taus: dict
            A dictionary of key, val as {tau: value} consisting of the valid
            taus for this row and column of the Dicke space element.
        """
        tau_functions = [
            self.tau3,
            self.tau2,
            self.tau4,
            self.tau5,
            self.tau1,
            self.tau6,
            self.tau7,
            self.tau8,
            self.tau9,
        ]
        N = self.N
        if self.isdicke(dicke_row, dicke_col) is False:
            return False
        # The 3x3 sub matrix surrounding the Dicke space element to
        # run the tau functions
        indices = [
            (dicke_row + x, dicke_col + y)
            for x in range(-1, 2)
            for y in range(-1, 2)
        ]
        taus = {}
        for idx, tau in zip(indices, tau_functions):
            if self.isdicke(idx[0], idx[1]):
                j, m = self.calculate_j_m(idx[0], idx[1])
                taus[tau.__name__] = tau(j, m)
        return taus

    def calculate_j_m(self, dicke_row, dicke_col):
        """
        Get the value of j and m for the particular Dicke space element.

        Parameters
        ----------
        dicke_row, dicke_col: int
            The row and column from the Dicke space matrix

        Returns
        -------
        j, m: float
            The j and m values.
        """
        N = self.N
        j = N / 2 - dicke_col
        m = N / 2 - dicke_row
        return (j, m)

    def calculate_k(self, dicke_row, dicke_col):
        """
        Get k value from the current row and column element in the Dicke space.

        Parameters
        ----------
        dicke_row, dicke_col: int
            The row and column from the Dicke space matrix.
        Returns
        -------
        k: int
            The row index for the matrix M for given Dicke space
            element.
        """
        N = self.N
        if dicke_row == 0:
            k = dicke_col
        else:
            k = int(
                ((dicke_col) / 2) * (2 * (N + 1) - 2 * (dicke_col - 1))
                + (dicke_row - (dicke_col))
            )
        return k

    def coefficient_matrix(self):
        """
        Generate the matrix M governing the dynamics for diagonal cases.

        If the initial density matrix and the Hamiltonian is diagonal, the
        evolution of the system is given by the simple ODE: dp/dt = Mp.
        """
        N = self.N
        nds = num_dicke_states(N)
        rows = self.N + 1
        cols = 0

        sparse_M = lil_matrix((nds, nds), dtype=float)
        if (self.N % 2) == 0:
            cols = int(self.N / 2 + 1)
        else:
            cols = int(self.N / 2 + 1 / 2)
        for (dicke_row, dicke_col) in np.ndindex(rows, cols):
            if self.isdicke(dicke_row, dicke_col):
                k = int(self.calculate_k(dicke_row, dicke_col))
                row = {}
                taus = self.tau_valid(dicke_row, dicke_col)
                for tau in taus:
                    j, m = self.calculate_j_m(dicke_row, dicke_col)
                    current_col = tau_column(tau, k, j)
                    sparse_M[k, int(current_col)] = taus[tau]
        return sparse_M.tocsr()

    def solve(self, rho0, tlist):
        """
        Solve the ODE for the evolution of diagonal states and Hamiltonians.
        """
        output = Result()
        output.solver = "pisolve"
        output.times = tlist
        output.states = []
        output.states.append(Qobj(rho0))
        rhs_generate = lambda y, tt, M: M.dot(y)
        rho0_flat = np.diag(np.real(rho0.full()))
        L = self.coefficient_matrix()
        rho_t = odeint(rhs_generate, rho0_flat, tlist, args=(L,))
        for r in rho_t[1:]:
            diag = np.diag(r)
            output.states.append(Qobj(diag))
        return output

    def tau1(self, j, m):
        """
        Calculate coefficient matrix element relative to (j, m, m).
        """
        yS = self.collective_emission
        yL = self.emission
        yD = self.dephasing
        yP = self.pumping
        yCP = self.collective_pumping
        N = float(self.N)
        spontaneous = yS * (1 + j - m) * (j + m)
        losses = yL * (N / 2 + m)
        pump = yP * (N / 2 - m)
        collective_pump = yCP * (1 + j + m) * (j - m)
        if j == 0:
            dephase = yD * N / 4
        else:
            dephase = yD * (N / 4 - m ** 2 * ((1 + N / 2) / (2 * j * (j + 1))))
        t1 = spontaneous + losses + pump + dephase + collective_pump
        return -t1

    def tau2(self, j, m):
        """
        Calculate coefficient matrix element relative to (j, m+1, m+1).
        """
        yS = self.collective_emission
        yL = self.emission
        N = float(self.N)
        spontaneous = yS * (1 + j - m) * (j + m)
        losses = yL * (
            ((N / 2 + 1) * (j - m + 1) * (j + m)) / (2 * j * (j + 1))
        )
        t2 = spontaneous + losses
        return t2

    def tau3(self, j, m):
        """
        Calculate coefficient matrix element relative to (j+1, m+1, m+1).
        """
        yL = self.emission
        N = float(self.N)
        num = (j + m - 1) * (j + m) * (j + 1 + N / 2)
        den = 2 * j * (2 * j + 1)
        t3 = yL * (num / den)
        return t3

    def tau4(self, j, m):
        """
        Calculate coefficient matrix element relative to (j-1, m+1, m+1).
        """
        yL = self.emission
        N = float(self.N)
        num = (j - m + 1) * (j - m + 2) * (N / 2 - j)
        den = 2 * (j + 1) * (2 * j + 1)
        t4 = yL * (num / den)
        return t4

    def tau5(self, j, m):
        """
        Calculate coefficient matrix element relative to (j+1, m, m).
        """
        yD = self.dephasing
        N = float(self.N)
        num = (j - m) * (j + m) * (j + 1 + N / 2)
        den = 2 * j * (2 * j + 1)
        t5 = yD * (num / den)
        return t5

    def tau6(self, j, m):
        """
        Calculate coefficient matrix element relative to (j-1, m, m).
        """
        yD = self.dephasing
        N = float(self.N)
        num = (j - m + 1) * (j + m + 1) * (N / 2 - j)
        den = 2 * (j + 1) * (2 * j + 1)
        t6 = yD * (num / den)
        return t6

    def tau7(self, j, m):
        """
        Calculate coefficient matrix element relative to (j+1, m-1, m-1).
        """
        yP = self.pumping
        N = float(self.N)
        num = (j - m - 1) * (j - m) * (j + 1 + N / 2)
        den = 2 * j * (2 * j + 1)
        t7 = yP * (float(num) / den)
        return t7

    def tau8(self, j, m):
        """
        Calculate coefficient matrix element relative to (j, m-1, m-1).
        """
        yP = self.pumping
        yCP = self.collective_pumping
        N = float(self.N)

        num = (1 + N / 2) * (j - m) * (j + m + 1)
        den = 2 * j * (j + 1)
        pump = yP * (float(num) / den)
        collective_pump = yCP * (j - m) * (j + m + 1)
        t8 = pump + collective_pump
        return t8

    def tau9(self, j, m):
        """
        Calculate coefficient matrix element relative to (j-1, m-1, m-1).
        """
        yP = self.pumping
        N = float(self.N)
        num = (j + m + 1) * (j + m + 2) * (N / 2 - j)
        den = 2 * (j + 1) * (2 * j + 1)
        t9 = yP * (float(num) / den)
        return t9