qutip/utilities.py

Summary

Maintainability
A
0 mins
Test Coverage
"""
This module contains utility functions that are commonly needed in other
qutip modules.
"""

__all__ = ['n_thermal', 'clebsch', 'convert_unit']

import numpy as np

def n_thermal(w, w_th):
    """
    Return the number of photons in thermal equilibrium for an harmonic
    oscillator mode with frequency 'w', at the temperature described by
    'w_th' where :math:`\\omega_{\\rm th} = k_BT/\\hbar`.

    Parameters
    ----------

    w : float or ndarray
        Frequency of the oscillator.

    w_th : float
        The temperature in units of frequency (or the same units as `w`).


    Returns
    -------

    n_avg : float or array

        Return the number of average photons in thermal equilibrium for a
        an oscillator with the given frequency and temperature.


    """

    if isinstance(w, np.ndarray):
        return 1.0 / (np.exp(w / w_th) - 1.0)

    else:
        if (w_th > 0) and np.exp(w / w_th) != 1.0:
            return 1.0 / (np.exp(w / w_th) - 1.0)
        else:
            return 0.0


def _factorial_prod(N, arr):
    arr[:int(N)] += 1


def _factorial_div(N, arr):
    arr[:int(N)] -= 1


def _to_long(arr):
    prod = 1
    for i, v in enumerate(arr):
        prod *= (i+1)**int(v)
    return prod


def clebsch(j1, j2, j3, m1, m2, m3):
    """Calculates the Clebsch-Gordon coefficient
    for coupling (j1,m1) and (j2,m2) to give (j3,m3).

    Parameters
    ----------
    j1 : float
        Total angular momentum 1.

    j2 : float
        Total angular momentum 2.

    j3 : float
        Total angular momentum 3.

    m1 : float
        z-component of angular momentum 1.

    m2 : float
        z-component of angular momentum 2.

    m3 : float
        z-component of angular momentum 3.

    Returns
    -------
    cg_coeff : float
        Requested Clebsch-Gordan coefficient.

    """
    if m3 != m1 + m2:
        return 0
    vmin = int(np.max([-j1 + j2 + m3, -j1 + m1, 0]))
    vmax = int(np.min([j2 + j3 + m1, j3 - j1 + j2, j3 + m3]))

    c_factor = np.zeros((int(j1 + j2 + j3 + 1)), np.int32)
    _factorial_prod(j3 + j1 - j2, c_factor)
    _factorial_prod(j3 - j1 + j2, c_factor)
    _factorial_prod(j1 + j2 - j3, c_factor)
    _factorial_prod(j3 + m3, c_factor)
    _factorial_prod(j3 - m3, c_factor)
    _factorial_div(j1 + j2 + j3 + 1, c_factor)
    _factorial_div(j1 - m1, c_factor)
    _factorial_div(j1 + m1, c_factor)
    _factorial_div(j2 - m2, c_factor)
    _factorial_div(j2 + m2, c_factor)
    C = np.sqrt((2.0 * j3 + 1.0)*_to_long(c_factor))

    s_factors = np.zeros(((vmax + 1 - vmin), (int(j1 + j2 + j3))), np.int32)
    sign = (-1) ** (vmin + j2 + m2)
    for i,v in enumerate(range(vmin, vmax + 1)):
        factor = s_factors[i,:]
        _factorial_prod(j2 + j3 + m1 - v, factor)
        _factorial_prod(j1 - m1 + v, factor)
        _factorial_div(j3 - j1 + j2 - v, factor)
        _factorial_div(j3 + m3 - v, factor)
        _factorial_div(v + j1 - j2 - m3, factor)
        _factorial_div(v, factor)
    common_denominator = -np.min(s_factors, axis=0)
    numerators = s_factors + common_denominator
    S = sum([(-1)**i * _to_long(vec) for i,vec in enumerate(numerators)]) * \
        sign / _to_long(common_denominator)
    return C * S


# -----------------------------------------------------------------------------
# Functions for unit conversions
#
_e = 1.602176565e-19  # C
_kB = 1.3806488e-23   # J/K
_h = 6.62606957e-34   # Js

_unit_factor_tbl = {
    #   "unit": "factor that convert argument from unit 'unit' to Joule"
    "J": 1.0,
    "eV": _e,
    "meV": 1.0e-3 * _e,
    "GHz": 1.0e9 * _h,
    "mK": 1.0e-3 * _kB,
}


def convert_unit(value, orig="meV", to="GHz"):
    """
    Convert an energy from unit `orig` to unit `to`.

    Parameters
    ----------
    value : float / array
        The energy in the old unit.

    orig : str, {"J", "eV", "meV", "GHz", "mK"}, default: "meV"
        The name of the original unit.

    to : str, {"J", "eV", "meV", "GHz", "mK"}, default: "GHz"
        The name of the new unit.

    Returns
    -------
    value_new_unit : float / array
        The energy in the new unit.
    """
    if orig not in _unit_factor_tbl:
        raise TypeError("Unsupported unit %s" % orig)

    if to not in _unit_factor_tbl:
        raise TypeError("Unsupported unit %s" % to)

    return value * (_unit_factor_tbl[orig] / _unit_factor_tbl[to])


def convert_GHz_to_meV(w):
    """
    Convert an energy from unit GHz to unit meV.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 GHz = 4.1357e-6 eV = 4.1357e-3 meV
    w_meV = w * 4.1357e-3
    return w_meV


def convert_meV_to_GHz(w):
    """
    Convert an energy from unit meV to unit GHz.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 meV = 1.0/4.1357e-3 GHz
    w_GHz = w / 4.1357e-3
    return w_GHz


def convert_J_to_meV(w):
    """
    Convert an energy from unit J to unit meV.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 eV = 1.602e-19 J
    w_meV = 1000.0 * w / _e
    return w_meV


def convert_meV_to_J(w):
    """
    Convert an energy from unit meV to unit J.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 eV = 1.602e-19 J
    w_J = 0.001 * w * _e
    return w_J


def convert_meV_to_mK(w):
    """
    Convert an energy from unit meV to unit mK.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 mK = 0.0000861740 meV
    w_mK = w / 0.0000861740
    return w_mK


def convert_mK_to_meV(w):
    """
    Convert an energy from unit mK to unit meV.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # 1 mK = 0.0000861740 meV
    w_meV = w * 0.0000861740
    return w_meV


def convert_GHz_to_mK(w):
    """
    Convert an energy from unit GHz to unit mK.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.
    """
    # h v [Hz] = kB T [K]
    # h 1e9 v [GHz] = kB 1e-3 T [mK]
    # T [mK] = 1e12 * (h/kB) * v [GHz]
    w_mK = w * 1.0e12 * (_h / _kB)
    return w_mK


def convert_mK_to_GHz(w):
    """
    Convert an energy from unit mK to unit GHz.

    Parameters
    ----------
    w : float / array
        The energy in the old unit.

    Returns
    -------
    w_new_unit : float / array
        The energy in the new unit.

    """
    w_GHz = w * 1.0e-12 * (_kB / _h)
    return w_GHz


def _version2int(version_string):
    str_list = version_string.split(
        "-dev")[0].split("rc")[0].split("a")[0].split("b")[0].split(
        "post")[0].split('.')
    return sum([int(d if len(d) > 0 else 0) * (100 ** (3 - n))
                for n, d in enumerate(str_list[:3])])