Showing 467 of 569 total issues
This block of commented-out lines of code should be removed. Open
/*Transport transport = session.getTransport("smtp");
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
Merge this if statement with the enclosing one. Open
if ("equals".equals(methodName))
- Read upRead up
- Exclude checks
Merging collapsible if
statements increases the code's readability.
Noncompliant Code Example
if (file != null) { if (file.isFile() || file.isDirectory()) { /* ... */ } }
Compliant Solution
if (file != null && isFileOrDirectory(file)) { /* ... */ } private static boolean isFileOrDirectory(File file) { return file.isFile() || file.isDirectory(); }
This block of commented-out lines of code should be removed. Open
/*try {
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
Add a private constructor to hide the implicit public one. Open
public abstract class SQLUtils {
- Read upRead up
- Exclude checks
Utility classes, which are collections of static
members, are not meant to be instantiated. Even abstract utility classes, which can
be extended, should not have public constructors.
Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.
Noncompliant Code Example
class StringUtils { // Noncompliant public static String concatenate(String s1, String s2) { return s1 + s2; } }
Compliant Solution
class StringUtils { // Compliant private StringUtils() { throw new IllegalStateException("Utility class"); } public static String concatenate(String s1, String s2) { return s1 + s2; } }
Exceptions
When class contains public static void main(String[] args)
method it is not considered as utility class and will be ignored by this
rule.
Use classes from the Java API instead of Sun classes. Open
import com.sun.codemodel.JAnnotationArrayMember;
- Read upRead up
- Exclude checks
Classes in the sun.*
or com.sun.*
packages are considered implementation details, and are not part of the Java API.
They can cause problems when moving to new versions of Java because there is no backwards compatibility guarantee. Similarly, they can cause problems when moving to a different Java vendor, such as OpenJDK.
Such classes are almost always wrapped by Java API classes that should be used instead.
Noncompliant Code Example
import com.sun.jna.Native; // Noncompliant import sun.misc.BASE64Encoder; // Noncompliant
Make "ref" transient or serializable. Open
private final SoftReference<V> ref;
- Read upRead up
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable
Make this method "synchronized" to match the parent class implementation. Open
public Throwable fillInStackTrace() {
- Read upRead up
- Exclude checks
When @Overrides
of synchronized
methods are not themselves synchronized
, the result can be improper
synchronization as callers rely on the thread-safety promised by the parent class.
Noncompliant Code Example
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override public void foo () { // Noncompliant // ... super.foo(); } }
Compliant Solution
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override synchronized void foo () { // ... super.foo(); } }
See
- CERT, TSM00-J - Do not override thread-safe methods with methods that are not thread-safe
Make this method "synchronized" to match the parent class implementation. Open
public Throwable fillInStackTrace() {
- Read upRead up
- Exclude checks
When @Overrides
of synchronized
methods are not themselves synchronized
, the result can be improper
synchronization as callers rely on the thread-safety promised by the parent class.
Noncompliant Code Example
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override public void foo () { // Noncompliant // ... super.foo(); } }
Compliant Solution
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override synchronized void foo () { // ... super.foo(); } }
See
- CERT, TSM00-J - Do not override thread-safe methods with methods that are not thread-safe
Synchronize this method to match the synchronization on "setLevel". Open
public Level getLevel() {
- Read upRead up
- Exclude checks
When one part of a getter/setter pair is synchronized
the other part should be too. Failure to synchronize both sides of a pair may
result in inconsistent behavior at runtime as callers access an inconsistent method state.
This rule raises an issue when either the method or the contents of one method in a getter/setter pair are synchrnoized but the other is not.
Noncompliant Code Example
public class Person { String name; int age; public synchronized void setName(String name) { this.name = name; } public String getName() { // Noncompliant return this.name; } public void setAge(int age) { // Noncompliant this.age = age; } public int getAge() { synchronized (this) { return this.age; } } }
Compliant Solution
public class Person { String name; int age; public synchronized void setName(String name) { this.name = name; } public synchronized String getName() { return this.name; } public void setAge(int age) { synchronized (this) { this.age = age; } } public int getAge() { synchronized (this) { return this.age; } } }
See
- CERT, VNA01-J. - Ensure visibility of shared references to immutable objects
Extract this nested try block into a separate method. Open
try {
- Read upRead up
- Exclude checks
Nesting try
/catch
blocks severely impacts the readability of source code because it makes it too difficult to understand
which block will catch which exception.
This block of commented-out lines of code should be removed. Open
if (className.startsWith(".", 15)) { // com.ibm.jsse2.b. || com.ibm.jsse2.f. || ...
- Read upRead up
- Exclude checks
Programmers should not comment out code as it bloats programs and reduces readability.
Unused code should be deleted and can be retrieved from source control history if required.
Make this method "synchronized" to match the parent class implementation. Open
public void reset() throws IOException {
- Read upRead up
- Exclude checks
When @Overrides
of synchronized
methods are not themselves synchronized
, the result can be improper
synchronization as callers rely on the thread-safety promised by the parent class.
Noncompliant Code Example
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override public void foo () { // Noncompliant // ... super.foo(); } }
Compliant Solution
public class Parent { synchronized void foo() { //... } } public class Child extends Parent { @Override synchronized void foo () { // ... super.foo(); } }
See
- CERT, TSM00-J - Do not override thread-safe methods with methods that are not thread-safe
Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed. Open
protected boolean refillByteBuffer() throws IOException {
- Read upRead up
- Exclude checks
Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.
See
Replace this use of System.out or System.err by a logger. Open
System.out.println("JVM Args: " + String.join(" ", ManagementFactory.getRuntimeMXBean().getInputArguments()));
- Read upRead up
- Exclude checks
When logging a message there are several important requirements which must be fulfilled:
- The user must be able to easily retrieve the logs
- The format of all logged message must be uniform to allow the user to easily read the log
- Logged data must actually be recorded
- Sensitive data must only be logged securely
If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.
Noncompliant Code Example
System.out.println("My Message"); // Noncompliant
Compliant Solution
logger.log("My Message");
See
- CERT, ERR02-J. - Prevent exceptions while logging data
Replace this use of System.out or System.err by a logger. Open
System.out.println(SEPARATOR);
- Read upRead up
- Exclude checks
When logging a message there are several important requirements which must be fulfilled:
- The user must be able to easily retrieve the logs
- The format of all logged message must be uniform to allow the user to easily read the log
- Logged data must actually be recorded
- Sensitive data must only be logged securely
If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.
Noncompliant Code Example
System.out.println("My Message"); // Noncompliant
Compliant Solution
logger.log("My Message");
See
- CERT, ERR02-J. - Prevent exceptions while logging data
Rename "mru" which hides the field declared at line 73. Open
final var mru = this.mru;
- Read upRead up
- Exclude checks
Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.
Noncompliant Code Example
class Foo { public int myField; public void doSomething() { int myField = 0; ... } }
See
- CERT, DCL01-C. - Do not reuse variable names in subscopes
- CERT, DCL51-J. - Do not shadow or obscure identifiers in subscopes
Move the contents of this initializer to a standard constructor or to field initializers. Open
{
- Read upRead up
- Exclude checks
Non-static initializers are rarely used, and can be confusing for most developers because they only run when new class instances are created. When possible, non-static initializers should be refactored into standard constructors or field initializers.
Noncompliant Code Example
class MyClass { private static final Map<String, String> MY_MAP = new HashMap<String, String>() { // Noncompliant - HashMap should be extended only to add behavior, not for initialization { put("a", "b"); } }; }
Compliant Solution
class MyClass { private static final Map<String, String> MY_MAP = new HashMap<String, String>(); static { MY_MAP.put("a", "b"); } }
or using Java 9 Map.of
:
class MyClass { // Compliant private static final Map<String, String> MY_MAP = java.util.Map.of("a", "b"); }
or using Guava:
class MyClass { // Compliant private static final Map<String, String> MY_MAP = ImmutableMap.of("a", "b"); }
Remove usage of generic wildcard type. Open
public static <K, V> CompletableFuture<?> forEachConcurrent(final @Nullable Map<K, V> map, @Nullable final ExecutorService workers,
- Read upRead up
- Exclude checks
It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.
Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.
This rule raises an issue when a method returns a wildcard type.
Noncompliant Code Example
List<? extends Animal> getAnimals(){...}
Compliant Solution
List<Animal> getAnimals(){...}
or
List<Dog> getAnimals(){...}
Remove this useless assignment; "value" already holds the assigned value along all execution paths. Open
value = _notNull(argumentName, value);
- Read upRead up
- Exclude checks
The transitive property says that if a == b
and b == c
, then a == c
. In such cases, there's no point in
assigning a
to c
or vice versa because they're already equivalent.
This rule raises an issue when an assignment is useless because the assigned-to variable already holds the value on all execution paths.
Noncompliant Code Example
a = b; c = a; b = c; // Noncompliant: c and b are already the same
Compliant Solution
a = b; c = a;
Make "rightMap" transient or serializable. Open
public final Map<K, V> rightMap;
- Read upRead up
- Exclude checks
Fields in a Serializable
class must themselves be either Serializable
or transient
even if the class is
never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly
Serializable
object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In
general a Serializable
class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.
This rule raises an issue on non-Serializable
fields, and on collection fields when they are not private
(because they
could be assigned non-Serializable
values externally), and when they are assigned non-Serializable
types within the
class.
Noncompliant Code Example
public class Address { //... } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; // Noncompliant; Address isn't serializable }
Compliant Solution
public class Address implements Serializable { private static final long serialVersionUID = 2405172041950251807L; } public class Person implements Serializable { private static final long serialVersionUID = 1905122041950251207L; private String name; private Address address; }
Exceptions
The alternative to making all members serializable
or transient
is to implement special methods which take on the
responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:
private void writeObject(java.io.ObjectOutputStream out) throws IOException private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;
See
- MITRE, CWE-594 - Saving Unserializable Objects to Disk
- Oracle Java 6, Serializable
- Oracle Java 7, Serializable