sebthom/jstuff

View on GitHub

Showing 467 of 569 total issues

Add a private constructor to hide the implicit public one.
Open

public abstract class SpringBeanParanamer {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

This block of commented-out lines of code should be removed.
Open

         try {

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Use classes from the Java API instead of Sun classes.
Open

import com.sun.codemodel.JAnnotationArrayMember;

Classes in the sun.* or com.sun.* packages are considered implementation details, and are not part of the Java API.

They can cause problems when moving to new versions of Java because there is no backwards compatibility guarantee. Similarly, they can cause problems when moving to a different Java vendor, such as OpenJDK.

Such classes are almost always wrapped by Java API classes that should be used instead.

Noncompliant Code Example

import com.sun.jna.Native;     // Noncompliant
import sun.misc.BASE64Encoder; // Noncompliant

Add a private constructor to hide the implicit public one.
Open

public abstract class Functions {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

"delegate" is a method parameter, and should not be used for synchronization.
Open

         synchronized (delegate) {
            return delegate.get();
         }

Synchronizing on a class field synchronizes not on the field itself, but on the object assigned to it. So synchronizing on a non-final field makes it possible for the field's value to change while a thread is in a block synchronized on the old value. That would allow a second thread, synchronized on the new value, to enter the block at the same time.

The story is very similar for synchronizing on parameters; two different threads running the method in parallel could pass two different object instances in to the method as parameters, completely undermining the synchronization.

Noncompliant Code Example

private String color = "red";

private void doSomething(){
  synchronized(color) {  // Noncompliant; lock is actually on object instance "red" referred to by the color variable
    //...
    color = "green"; // other threads now allowed into this block
    // ...
  }
  synchronized(new Object()) { // Noncompliant this is a no-op.
     // ...
  }
}

Compliant Solution

private String color = "red";
private final Object lockObj = new Object();

private void doSomething(){
  synchronized(lockObj) {
    //...
    color = "green";
    // ...
  }
}

See

  • MITRE, CWE-412 - Unrestricted Externally Accessible Lock
  • MITRE, CWE-413 - Improper Resource Locking
  • CERT, LCK00-J. - Use private final lock objects to synchronize classes that may interact with untrusted code

Rename "collator" which hides the field declared at line 22.
Open

      var collator = this.collator;

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Extract this nested ternary operation into an independent statement.
Open

            : n1 > n2 //
                  ? 1
                  : 0;

Just because you can do something, doesn't mean you should, and that's the case with nested ternary operations. Nesting ternary operators results in the kind of code that may seem clear as day when you write it, but six months later will leave maintainers (or worse - future you) scratching their heads and cursing.

Instead, err on the side of clarity, and use another line to express the nested operation as a separate statement.

Noncompliant Code Example

public String getReadableStatus(Job j) {
  return j.isRunning() ? "Running" : j.hasErrors() ? "Failed" : "Succeeded";  // Noncompliant
}

Compliant Solution

public String getReadableStatus(Job j) {
  if (j.isRunning()) {
    return "Running";
  }
  return j.hasErrors() ? "Failed" : "Succeeded";
}

Remove this unused method parameter "eventType".
Open

   public static <EVENT> Builder<EVENT> builder(@SuppressWarnings("unused") final Class<EVENT> eventType, final Duration interval) {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Refactor this method to reduce its Cognitive Complexity from 50 to the 15 allowed.
Open

   public static @Nullable CharSequence globToRegexNullable(final @Nullable String globPattern) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Remove usage of generic wildcard type.
Open

   public static <K, V> CompletableFuture<?> forEachConcurrent(final @Nullable Map<K, V> map, @Nullable final ExecutorService workers,

It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.

Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.

This rule raises an issue when a method returns a wildcard type.

Noncompliant Code Example

List<? extends Animal> getAnimals(){...}

Compliant Solution

List<Animal> getAnimals(){...}

or

List<Dog> getAnimals(){...}

Make "leftMap" transient or serializable.
Open

         public final Map<K, V> leftMap;

Fields in a Serializable class must themselves be either Serializable or transient even if the class is never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In general a Serializable class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.

This rule raises an issue on non-Serializable fields, and on collection fields when they are not private (because they could be assigned non-Serializable values externally), and when they are assigned non-Serializable types within the class.

Noncompliant Code Example

public class Address {
  //...
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;  // Noncompliant; Address isn't serializable
}

Compliant Solution

public class Address implements Serializable {
  private static final long serialVersionUID = 2405172041950251807L;
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;
}

Exceptions

The alternative to making all members serializable or transient is to implement special methods which take on the responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:

 private void writeObject(java.io.ObjectOutputStream out)
     throws IOException
 private void readObject(java.io.ObjectInputStream in)
     throws IOException, ClassNotFoundException;

See

Add a private constructor to hide the implicit public one.
Open

public abstract class Threads {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Extract this nested try block into a separate method.
Open

                  try {

Nesting try/catch blocks severely impacts the readability of source code because it makes it too difficult to understand which block will catch which exception.

Rename "proxyType" which hides the field declared at line 171.
Open

         final var proxyType = TcpTunnelService.this.proxyType;

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Add the missing @deprecated Javadoc tag.
Open

   public void setDate(final int date) throws UnsupportedOperationException {

Deprecation should be marked with both the @Deprecated annotation and @deprecated Javadoc tag. The annotation enables tools such as IDEs to warn about referencing deprecated elements, and the tag can be used to explain when it was deprecated, why, and how references should be refactored.

Further, Java 9 adds two additional arguments to the annotation:

  • since allows you to describe when the deprecation took place
  • forRemoval, indicates whether the deprecated element will be removed at some future date

If your compile level is Java 9 or higher, you should be using one or both of these arguments.

Noncompliant Code Example

class MyClass {

  @Deprecated
  public void foo1() {
  }

  /**
    * @deprecated
    */
  public void foo2() {    // Noncompliant
  }

}

Compliant Solution

class MyClass {

  /**
    * @deprecated (when, why, refactoring advice...)
    */
  @Deprecated
  public void foo1() {
  }

  /**
    * Java >= 9
    * @deprecated (when, why, refactoring advice...)
    */
  @Deprecated(since="5.1")
  public void foo2() {
  }

  /**
    * Java >= 9
    * @deprecated (when, why, refactoring advice...)
    */
  @Deprecated(since="4.2", forRemoval=true)
  public void foo3() {
  }

}

Exceptions

The members and methods of a deprecated class or interface are ignored by this rule. The classes and interfaces themselves are still subject to it.

/**
 * @deprecated (when, why, etc...)
 */
@Deprecated
class Qix  {

  public void foo() {} // Compliant; class is deprecated

}

/**
 * @deprecated (when, why, etc...)
 */
@Deprecated
interface Plop {

  void bar();

}

Add a private constructor to hide the implicit public one.
Open

public abstract class Levels {

Utility classes, which are collections of static members, are not meant to be instantiated. Even abstract utility classes, which can be extended, should not have public constructors.

Java adds an implicit public constructor to every class which does not define at least one explicitly. Hence, at least one non-public constructor should be defined.

Noncompliant Code Example

class StringUtils { // Noncompliant

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Compliant Solution

class StringUtils { // Compliant

  private StringUtils() {
    throw new IllegalStateException("Utility class");
  }

  public static String concatenate(String s1, String s2) {
    return s1 + s2;
  }

}

Exceptions

When class contains public static void main(String[] args) method it is not considered as utility class and will be ignored by this rule.

Refactor this method to reduce its Cognitive Complexity from 23 to the 15 allowed.
Open

   public static Method findAnyGetter(final Class<?> clazz, final String propertyName, final @Nullable Class<?> compatibleTo) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Rename "buff" which hides the field declared at line 22.
Open

      var buff = this.buff;

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Rename "compressor" which hides the field declared at line 24.
Open

      final var compressor = this.compressor;

Overriding or shadowing a variable declared in an outer scope can strongly impact the readability, and therefore the maintainability, of a piece of code. Further, it could lead maintainers to introduce bugs because they think they're using one variable but are really using another.

Noncompliant Code Example

class Foo {
  public int myField;

  public void doSomething() {
    int myField = 0;
    ...
  }
}

See

Replace this use of System.out or System.err by a logger.
Open

      System.out.println(SEPARATOR);

When logging a message there are several important requirements which must be fulfilled:

  • The user must be able to easily retrieve the logs
  • The format of all logged message must be uniform to allow the user to easily read the log
  • Logged data must actually be recorded
  • Sensitive data must only be logged securely

If a program directly writes to the standard outputs, there is absolutely no way to comply with those requirements. That's why defining and using a dedicated logger is highly recommended.

Noncompliant Code Example

System.out.println("My Message");  // Noncompliant

Compliant Solution

logger.log("My Message");

See

Severity
Category
Status
Source
Language