sebthom/jstuff

View on GitHub

Showing 467 of 569 total issues

Either re-interrupt this method or rethrow the "InterruptedException" that can be caught here.
Open

            } catch (final InterruptedException ex) {

InterruptedExceptions should never be ignored in the code, and simply logging the exception counts in this case as "ignoring". The throwing of the InterruptedException clears the interrupted state of the Thread, so if the exception is not handled properly the fact that the thread was interrupted will be lost. Instead, InterruptedExceptions should either be rethrown - immediately or after cleaning up the method's state - or the thread should be re-interrupted by calling Thread.interrupt() even if this is supposed to be a single-threaded application. Any other course of action risks delaying thread shutdown and loses the information that the thread was interrupted - probably without finishing its task.

Similarly, the ThreadDeath exception should also be propagated. According to its JavaDoc:

If ThreadDeath is caught by a method, it is important that it be rethrown so that the thread actually dies.

Noncompliant Code Example

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) { // Noncompliant; logging is not enough
    LOGGER.log(Level.WARN, "Interrupted!", e);
  }
}

Compliant Solution

public void run () {
  try {
    while (true) {
      // do stuff
    }
  }catch (InterruptedException e) {
    LOGGER.log(Level.WARN, "Interrupted!", e);
    // Restore interrupted state...
    Thread.currentThread().interrupt();
  }
}

See

Don't try to be smarter than the JVM, remove this call to run the garbage collector.
Open

               System.gc();

Calling System.gc() or Runtime.getRuntime().gc() is a bad idea for a simple reason: there is no way to know exactly what will be done under the hood by the JVM because the behavior will depend on its vendor, version and options:

  • Will the whole application be frozen during the call?
  • Is the -XX:DisableExplicitGC option activated?
  • Will the JVM simply ignore the call?
  • ...

Like for System.gc(), there is no reason to manually call runFinalization() to force the call of finalization methods of any objects pending finalization.

An application relying on these unpredictable methods is also unpredictable and therefore broken. The task of running the garbage collector and calling finalize() methods should be left exclusively to the JVM.

This block of commented-out lines of code should be removed.
Open

         // return Strings.leftPad(new BigInteger(1, bytes).toString(16), hashCharLength, '0');

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Remove this useless assignment; "value" already holds the assigned value along all execution paths.
Open

      value = _notNull(argumentName, value);

The transitive property says that if a == b and b == c, then a == c. In such cases, there's no point in assigning a to c or vice versa because they're already equivalent.

This rule raises an issue when an assignment is useless because the assigned-to variable already holds the value on all execution paths.

Noncompliant Code Example

a = b;
c = a;
b = c; // Noncompliant: c and b are already the same

Compliant Solution

a = b;
c = a;

Remove this useless assignment; "file" already holds the assigned value along all execution paths.
Open

      file = _notNull(argumentName, file);

The transitive property says that if a == b and b == c, then a == c. In such cases, there's no point in assigning a to c or vice versa because they're already equivalent.

This rule raises an issue when an assignment is useless because the assigned-to variable already holds the value on all execution paths.

Noncompliant Code Example

a = b;
c = a;
b = c; // Noncompliant: c and b are already the same

Compliant Solution

a = b;
c = a;

Define a constant instead of duplicating this literal "Resource [" 5 times.
Open

         throw _createIllegalArgumentException(argumentName, "Resource [" + file.toAbsolutePath() + "] is not a directory.");

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Make "id" transient or serializable.
Open

   public final ID id;

Fields in a Serializable class must themselves be either Serializable or transient even if the class is never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In general a Serializable class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.

This rule raises an issue on non-Serializable fields, and on collection fields when they are not private (because they could be assigned non-Serializable values externally), and when they are assigned non-Serializable types within the class.

Noncompliant Code Example

public class Address {
  //...
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;  // Noncompliant; Address isn't serializable
}

Compliant Solution

public class Address implements Serializable {
  private static final long serialVersionUID = 2405172041950251807L;
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;
}

Exceptions

The alternative to making all members serializable or transient is to implement special methods which take on the responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:

 private void writeObject(java.io.ObjectOutputStream out)
     throws IOException
 private void readObject(java.io.ObjectInputStream in)
     throws IOException, ClassNotFoundException;

See

Extract this nested ternary operation into an independent statement.
Open

                  : components instanceof Set //
                        ? Collections.unmodifiableSet((Set<@NonNull Component>) components)
                        : Collections.unmodifiableCollection(components);

Just because you can do something, doesn't mean you should, and that's the case with nested ternary operations. Nesting ternary operators results in the kind of code that may seem clear as day when you write it, but six months later will leave maintainers (or worse - future you) scratching their heads and cursing.

Instead, err on the side of clarity, and use another line to express the nested operation as a separate statement.

Noncompliant Code Example

public String getReadableStatus(Job j) {
  return j.isRunning() ? "Running" : j.hasErrors() ? "Failed" : "Succeeded";  // Noncompliant
}

Compliant Solution

public String getReadableStatus(Job j) {
  if (j.isRunning()) {
    return "Running";
  }
  return j.hasErrors() ? "Failed" : "Succeeded";
}

This block of commented-out lines of code should be removed.
Open

       * final DatabaseMetaData dbm = c.getMetaData();

Programmers should not comment out code as it bloats programs and reduces readability.

Unused code should be deleted and can be retrieved from source control history if required.

Remove this useless assignment to local variable "!unknown!".
Open

            final HashCodeAssignment ida2 = HASHCODE_ASSIGNMENT_BY_ID.get(ida.id);

A dead store happens when a local variable is assigned a value that is not read by any subsequent instruction. Calculating or retrieving a value only to then overwrite it or throw it away, could indicate a serious error in the code. Even if it's not an error, it is at best a waste of resources. Therefore all calculated values should be used.

Noncompliant Code Example

i = a + b; // Noncompliant; calculation result not used before value is overwritten
i = compute();

Compliant Solution

i = a + b;
i += compute();

Exceptions

This rule ignores initializations to -1, 0, 1, null, true, false and "".

See

Add a default case to this switch.
Open

         switch (reader.getEventType()) {

The requirement for a final default clause is defensive programming. The clause should either take appropriate action, or contain a suitable comment as to why no action is taken.

Noncompliant Code Example

switch (param) {  //missing default clause
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

switch (param) {
  default: // default clause should be the last one
    error();
    break;
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
}

Compliant Solution

switch (param) {
  case 0:
    doSomething();
    break;
  case 1:
    doSomethingElse();
    break;
  default:
    error();
    break;
}

Exceptions

If the switch parameter is an Enum and if all the constants of this enum are used in the case statements, then no default clause is expected.

Example:

public enum Day {
    SUNDAY, MONDAY
}
...
switch(day) {
  case SUNDAY:
    doSomething();
    break;
  case MONDAY:
    doSomethingElse();
    break;
}

See

Refactor this method to reduce its Cognitive Complexity from 18 to the 15 allowed.
Open

   private static Pattern xpathToPattern(String xpath) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Rename field "prefix"
Open

      public final String prefix;

It's confusing to have a class member with the same name (case differences aside) as its enclosing class. This is particularly so when you consider the common practice of naming a class instance for the class itself.

Best practice dictates that any field or member with the same name as the enclosing class be renamed to be more descriptive of the particular aspect of the class it represents or holds.

Noncompliant Code Example

public class Foo {
  private String foo;

  public String getFoo() { }
}

Foo foo = new Foo();
foo.getFoo() // what does this return?

Compliant Solution

public class Foo {
  private String name;

  public String getName() { }
}

//...

Foo foo = new Foo();
foo.getName()

Exceptions

When the type of the field is the containing class and that field is static, no issue is raised to allow singletons named like the type.

public class Foo {
  ...
  private static Foo foo;
  public Foo getInstance() {
    if(foo==null) {
      foo = new Foo();
    }
    return foo;
  }
  ...
}

Make "first" transient or serializable.
Open

      private final Function<In, Intermediate> first;

Fields in a Serializable class must themselves be either Serializable or transient even if the class is never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In general a Serializable class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.

This rule raises an issue on non-Serializable fields, and on collection fields when they are not private (because they could be assigned non-Serializable values externally), and when they are assigned non-Serializable types within the class.

Noncompliant Code Example

public class Address {
  //...
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;  // Noncompliant; Address isn't serializable
}

Compliant Solution

public class Address implements Serializable {
  private static final long serialVersionUID = 2405172041950251807L;
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;
}

Exceptions

The alternative to making all members serializable or transient is to implement special methods which take on the responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:

 private void writeObject(java.io.ObjectOutputStream out)
     throws IOException
 private void readObject(java.io.ObjectInputStream in)
     throws IOException, ClassNotFoundException;

See

Remove this unused method parameter "targetType".
Open

   public static <In, Out> CastTo<In, Out> castTo(@SuppressWarnings("unused") final Class<Out> targetType) {

Unused parameters are misleading. Whatever the values passed to such parameters, the behavior will be the same.

Noncompliant Code Example

void doSomething(int a, int b) {     // "b" is unused
  compute(a);
}

Compliant Solution

void doSomething(int a) {
  compute(a);
}

Exceptions

The rule will not raise issues for unused parameters:

  • that are annotated with @javax.enterprise.event.Observes
  • in overrides and implementation methods
  • in interface default methods
  • in non-private methods that only throw or that have empty bodies
  • in annotated methods, unless the annotation is @SuppressWarning("unchecked") or @SuppressWarning("rawtypes"), in which case the annotation will be ignored
  • in overridable methods (non-final, or not member of a final class, non-static, non-private), if the parameter is documented with a proper javadoc.
@Override
void doSomething(int a, int b) {     // no issue reported on b
  compute(a);
}

public void foo(String s) {
  // designed to be extended but noop in standard case
}

protected void bar(String s) {
  //open-closed principle
}

public void qix(String s) {
  throw new UnsupportedOperationException("This method should be implemented in subclasses");
}

/**
 * @param s This string may be use for further computation in overriding classes
 */
protected void foobar(int a, String s) { // no issue, method is overridable and unused parameter has proper javadoc
  compute(a);
}

See

  • CERT, MSC12-C. - Detect and remove code that has no effect or is never executed

Define a constant instead of duplicating this literal "provider" 6 times.
Open

      Args.notNull("provider", provider);

Duplicated string literals make the process of refactoring error-prone, since you must be sure to update all occurrences.

On the other hand, constants can be referenced from many places, but only need to be updated in a single place.

Noncompliant Code Example

With the default threshold of 3:

public void run() {
  prepare("action1");                              // Noncompliant - "action1" is duplicated 3 times
  execute("action1");
  release("action1");
}

@SuppressWarning("all")                            // Compliant - annotations are excluded
private void method1() { /* ... */ }
@SuppressWarning("all")
private void method2() { /* ... */ }

public String method3(String a) {
  System.out.println("'" + a + "'");               // Compliant - literal "'" has less than 5 characters and is excluded
  return "";                                       // Compliant - literal "" has less than 5 characters and is excluded
}

Compliant Solution

private static final String ACTION_1 = "action1";  // Compliant

public void run() {
  prepare(ACTION_1);                               // Compliant
  execute(ACTION_1);
  release(ACTION_1);
}

Exceptions

To prevent generating some false-positives, literals having less than 5 characters are excluded.

Catch Exception instead of Throwable.
Open

      } catch (final Throwable t) { // CHECKSTYLE:IGNORE IllegalCatch

Throwable is the superclass of all errors and exceptions in Java. Error is the superclass of all errors, which are not meant to be caught by applications.

Catching either Throwable or Error will also catch OutOfMemoryError and InternalError, from which an application should not attempt to recover.

Noncompliant Code Example

try { /* ... */ } catch (Throwable t) { /* ... */ }
try { /* ... */ } catch (Error e) { /* ... */ }

Compliant Solution

try { /* ... */ } catch (RuntimeException e) { /* ... */ }
try { /* ... */ } catch (MyException e) { /* ... */ }

See

Refactor this method to reduce its Cognitive Complexity from 16 to the 15 allowed.
Open

   public static Iterable<String> splitAsIterable(final String text, final char separator) {

Cognitive Complexity is a measure of how hard the control flow of a method is to understand. Methods with high Cognitive Complexity will be difficult to maintain.

See

Remove usage of generic wildcard type.
Open

   public static <T> CompletableFuture<?> forEachWithIndexConcurrent(final @Nullable Iterator<T> it, @Nullable ExecutorService workers,

It is highly recommended not to use wildcard types as return types. Because the type inference rules are fairly complex it is unlikely the user of that API will know how to use it correctly.

Let's take the example of method returning a "List<? extends Animal>". Is it possible on this list to add a Dog, a Cat, ... we simply don't know. And neither does the compiler, which is why it will not allow such a direct use. The use of wildcard types should be limited to method parameters.

This rule raises an issue when a method returns a wildcard type.

Noncompliant Code Example

List<? extends Animal> getAnimals(){...}

Compliant Solution

List<Animal> getAnimals(){...}

or

List<Dog> getAnimals(){...}

Make "map" transient or serializable.
Open

   private final Map<K, V> map;

Fields in a Serializable class must themselves be either Serializable or transient even if the class is never explicitly serialized or deserialized. For instance, under load, most J2EE application frameworks flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data members could cause program crashes, and open the door to attackers. In general a Serializable class is expected to fulfil its contract and not have an unexpected behaviour when an instance is serialized.

This rule raises an issue on non-Serializable fields, and on collection fields when they are not private (because they could be assigned non-Serializable values externally), and when they are assigned non-Serializable types within the class.

Noncompliant Code Example

public class Address {
  //...
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;  // Noncompliant; Address isn't serializable
}

Compliant Solution

public class Address implements Serializable {
  private static final long serialVersionUID = 2405172041950251807L;
}

public class Person implements Serializable {
  private static final long serialVersionUID = 1905122041950251207L;

  private String name;
  private Address address;
}

Exceptions

The alternative to making all members serializable or transient is to implement special methods which take on the responsibility of properly serializing and de-serializing the object. This rule ignores classes which implement the following methods:

 private void writeObject(java.io.ObjectOutputStream out)
     throws IOException
 private void readObject(java.io.ObjectInputStream in)
     throws IOException, ClassNotFoundException;

See

Severity
Category
Status
Source
Language