Showing 1,384 of 1,384 total issues
Function respond
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def respond(self, content=None, direct=False):
""" Respond to this ``Handler``'s request with raw ``str`` or ``unicode``
content. UTF-8 encoding happens if necessary.
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function delete
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def delete(cls, key, **kwargs):
""" Delete an entity by Key from memory.
:param key: Target :py:class:`model.Key` object at which data should be
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function initialize_request_state
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def initialize_request_state(self, state): # pragma: no cover
""" Initialize this service with ``state`` handed-in by ProtoRPC's
underlying plumbing.
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function __repr__
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def __repr__(cls):
""" Generate string representation of `Model` class,
like "Model(<prop1>, <prop n...>)".
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function run
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def run(environment):
def root(context):
if 0: yield None
for event in context.blocks['root'][0](context):
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function redirect
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def redirect(cls, url=None, name=None, permanent=False, code=None,
*args, **kwargs):
""" Prepare an HTTP redirect to ``url`` or ``name``, where ``name`` is a
named URL bound earlier via the ``url`` decorator.
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function __new__
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def __new__(mcs, name_or_target, bases=None, properties=None):
""" Construct a new ``Delegate`` subclass.
:param name_or_target: Either the ``str`` name of a subtype extending
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Function match
has a Cognitive Complexity of 6 (exceeds 5 allowed). Consider refactoring. Open
def match(self, target):
""" Match this query's target, operator, and embedded data against a target
entity or value.
- Read upRead up
- Create a ticketCreate a ticket
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Line too long (83 > 80 characters) Open
"remove it from your system entirely before rerunning this script."
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Limit all lines to a maximum of 79 characters.
There are still many devices around that are limited to 80 character
lines; plus, limiting windows to 80 characters makes it possible to
have several windows side-by-side. The default wrapping on such
devices looks ugly. Therefore, please limit all lines to a maximum
of 79 characters. For flowing long blocks of text (docstrings or
comments), limiting the length to 72 characters is recommended.
Reports error E501.
Module level import not at top of file Open
from .rpc import *
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Place imports at the top of the file.
Always put imports at the top of the file, just after any module
comments and docstrings, and before module globals and constants.
Okay: import os
Okay: # this is a comment\nimport os
Okay: '''this is a module docstring'''\nimport os
Okay: r'''this is a module docstring'''\nimport os
Okay:
try:\n\timport x\nexcept ImportError:\n\tpass\nelse:\n\tpass\nimport y
Okay:
try:\n\timport x\nexcept ImportError:\n\tpass\nfinally:\n\tpass\nimport y
E402: a=1\nimport os
E402: 'One string'\n"Two string"\nimport os
E402: a=1\nfrom sys import x
Okay: if x:\n import os
Indentation is not a multiple of 4 (comment) Open
# setuptools
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2
Do not assign a lambda expression, use a def Open
CHECK_SETUPTOOLS = lambda: CURRENT_SETUPTOOLS_VERSION <= SETUPTOOLS_VERSION
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Compound statements (on the same line) are generally discouraged.
While sometimes it's okay to put an if/for/while with a small body
on the same line, never do this for multi-clause statements.
Also avoid folding such long lines!
Always use a def statement instead of an assignment statement that
binds a lambda expression directly to a name.
Okay: if foo == 'blah':\n do_blah_thing()
Okay: do_one()
Okay: do_two()
Okay: do_three()
E701: if foo == 'blah': do_blah_thing()
E701: for x in lst: total += x
E701: while t < 10: t = delay()
E701: if foo == 'blah': do_blah_thing()
E701: else: do_non_blah_thing()
E701: try: something()
E701: finally: cleanup()
E701: if foo == 'blah': one(); two(); three()
E702: do_one(); do_two(); do_three()
E703: do_four(); # useless semicolon
E704: def f(x): return 2*x
E731: f = lambda x: 2*x
Too many leading '#' for block comment Open
## Environment checks
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Separate inline comments by at least two spaces.
An inline comment is a comment on the same line as a statement.
Inline comments should be separated by at least two spaces from the
statement. They should start with a # and a single space.
Each line of a block comment starts with a # and a single space
(unless it is indented text inside the comment).
Okay: x = x + 1 # Increment x
Okay: x = x + 1 # Increment x
Okay: # Block comment
E261: x = x + 1 # Increment x
E262: x = x + 1 #Increment x
E262: x = x + 1 # Increment x
E265: #Block comment
E266: ### Block comment
Indentation is not a multiple of 4 (comment) Open
# start top-level argument parser
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2
Do not assign a lambda expression, use a def Open
itervalues = lambda self: self._entries.itervalues()
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Compound statements (on the same line) are generally discouraged.
While sometimes it's okay to put an if/for/while with a small body
on the same line, never do this for multi-clause statements.
Also avoid folding such long lines!
Always use a def statement instead of an assignment statement that
binds a lambda expression directly to a name.
Okay: if foo == 'blah':\n do_blah_thing()
Okay: do_one()
Okay: do_two()
Okay: do_three()
E701: if foo == 'blah': do_blah_thing()
E701: for x in lst: total += x
E701: while t < 10: t = delay()
E701: if foo == 'blah': do_blah_thing()
E701: else: do_non_blah_thing()
E701: try: something()
E701: finally: cleanup()
E701: if foo == 'blah': one(); two(); three()
E702: do_one(); do_two(); do_three()
E703: do_four(); # useless semicolon
E704: def f(x): return 2*x
E731: f = lambda x: 2*x
Indentation is not a multiple of 4 (comment) Open
# message types
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2
Too many leading '#' for block comment Open
## expose message classes alias
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Separate inline comments by at least two spaces.
An inline comment is a comment on the same line as a statement.
Inline comments should be separated by at least two spaces from the
statement. They should start with a # and a single space.
Each line of a block comment starts with a # and a single space
(unless it is indented text inside the comment).
Okay: x = x + 1 # Increment x
Okay: x = x + 1 # Increment x
Okay: # Block comment
E261: x = x + 1 # Increment x
E262: x = x + 1 #Increment x
E262: x = x + 1 # Increment x
E265: #Block comment
E266: ### Block comment
Indentation is not a multiple of 4 (comment) Open
# wrap responder
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2
Indentation is not a multiple of 4 (comment) Open
# quack quack
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2
Indentation is not a multiple of 4 (comment) Open
# simple extraction
- Read upRead up
- Create a ticketCreate a ticket
- Exclude checks
Use indent_size (PEP8 says 4) spaces per indentation level.
For really old code that you don't want to mess up, you can continue
to use 8-space tabs.
Okay: a = 1
Okay: if a == 0:\n a = 1
E111: a = 1
E114: # a = 1
Okay: for item in items:\n pass
E112: for item in items:\npass
E115: for item in items:\n# Hi\n pass
Okay: a = 1\nb = 2
E113: a = 1\n b = 2
E116: a = 1\n # b = 2