shadowproject/shadow

View on GitHub
src/key.cpp

Summary

Maintainability
Test Coverage
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "key.h"
#include "eckey.h"

int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len)
{
    while (c1len > c2len)
    {
        if (*c1)
            return 1;
        c1++;
        c1len--;
    };
    while (c2len > c1len)
    {
        if (*c2)
            return -1;
        c2++;
        c2len--;
    };
    while (c1len > 0)
    {
        if (*c1 > *c2)
            return 1;
        if (*c2 > *c1)
            return -1;
        c1++;
        c2++;
        c1len--;
    };
    return 0;
}

// Order of secp256k1's generator minus 1.
const unsigned char vchMaxModOrder[32] = {
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
    0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
    0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
};

// Half of the order of secp256k1's generator minus 1.
const unsigned char vchMaxModHalfOrder[32] = {
    0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D,
    0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0
};

const unsigned char vchZero[0] = {};



bool CKey::Check(const unsigned char *vch)
{
    // Do not convert to OpenSSL's data structures for range-checking keys,
    // it's easy enough to do directly.
    static const unsigned char vchMax[32] = {
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
        0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
        0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
    };
    bool fIsZero = true;
    for (int i=0; i<32 && fIsZero; i++)
        if (vch[i] != 0)
            fIsZero = false;
    if (fIsZero)
        return false;
    for (int i=0; i<32; i++)
    {
        if (vch[i] < vchMax[i])
            return true;
        if (vch[i] > vchMax[i])
            return false;
    }
    return true;
}

bool CKey::CheckSignatureElement(const unsigned char *vch, int len, bool half)
{
    return CompareBigEndian(vch, len, vchZero, 0) > 0 &&
           CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0;
}

void CKey::MakeNewKey(bool fCompressedIn)
{
    do {
        RAND_bytes(vch, sizeof(vch));
    } while (!Check(vch));
    fValid = true;
    fCompressed = fCompressedIn;
}

bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn)
{
    CECKey key;
    if (!key.SetPrivKey(privkey))
        return false;
    key.GetSecretBytes(vch);
    fCompressed = fCompressedIn;
    fValid = true;
    return true;
}

CPrivKey CKey::GetPrivKey() const
{
    assert(fValid);
    CECKey key;
    key.SetSecretBytes(vch);
    CPrivKey privkey;
    key.GetPrivKey(privkey, fCompressed);
    return privkey;
}

CPubKey CKey::GetPubKey() const
{
    assert(fValid);
    CECKey key;
    key.SetSecretBytes(vch);
    CPubKey pubkey;
    key.GetPubKey(pubkey, fCompressed);
    return pubkey;
}

CPubKey CKey::GetPubKey(bool fForceCompressed) const
{
    assert(fValid);
    CECKey key;
    key.SetSecretBytes(vch);
    CPubKey pubkey;
    key.GetPubKey(pubkey, fForceCompressed);
    return pubkey;
}

bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const
{
    if (!fValid)
        return false;
    CECKey key;
    key.SetSecretBytes(vch);
    return key.Sign(hash, vchSig);
}

bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const
{
    if (!fValid)
        return false;
    CECKey key;
    key.SetSecretBytes(vch);
    vchSig.resize(65);
    int rec = -1;
    if (!key.SignCompact(hash, &vchSig[1], rec))
        return false;
    assert(rec != -1);
    vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
    return true;
}

bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false)
{
    CECKey key;
    if (!key.SetPrivKey(privkey, fSkipCheck))
        return false;

    key.GetSecretBytes(vch);
    fCompressed = vchPubKey.IsCompressed();
    fValid = true;

    if (fSkipCheck)
        return true;

    if (GetPubKey() != vchPubKey)
        return false;

    return true;
}

bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const
{
    if (!IsValid())
        return false;
    CECKey key;
    if (!key.SetPubKey(*this))
        return false;
    if (!key.Verify(hash, vchSig))
        return false;
    return true;
}

bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig)
{
    if (vchSig.size() != 65)
        return false;
    CECKey key;
    if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
        return false;
    key.GetPubKey(*this, (vchSig[0] - 27) & 4);
    return true;
}

bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const
{
    if (!IsValid())
        return false;
    if (vchSig.size() != 65)
        return false;
    CECKey key;
    if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
        return false;
    CPubKey pubkeyRec;
    key.GetPubKey(pubkeyRec, IsCompressed());
    if (*this != pubkeyRec)
        return false;
    return true;
}

bool CPubKey::IsFullyValid() const
{
    if (!IsValid())
        return false;
    CECKey key;
    if (!key.SetPubKey(*this))
        return false;
    return true;
}

bool CPubKey::Decompress()
{
    if (!IsValid())
        return false;
    CECKey key;
    if (!key.SetPubKey(*this))
        return false;
    key.GetPubKey(*this, false);
    return true;
}

void static BIP32Hash(const unsigned char chainCode[32], unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
{
    unsigned char num[4];
    num[0] = (nChild >> 24) & 0xFF;
    num[1] = (nChild >> 16) & 0xFF;
    num[2] = (nChild >>  8) & 0xFF;
    num[3] = (nChild >>  0) & 0xFF;
    HMAC_SHA512_CTX ctx;
    HMAC_SHA512_Init(&ctx, chainCode, 32);
    HMAC_SHA512_Update(&ctx, &header, 1);
    HMAC_SHA512_Update(&ctx, data, 32);
    HMAC_SHA512_Update(&ctx, num, 4);
    HMAC_SHA512_Final(output, &ctx);
}

bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const
{
    assert(IsValid());
    assert(IsCompressed());
    unsigned char out[64];
    LockObject(out);
    if ((nChild >> 31) == 0)
    {
        CPubKey pubkey = GetPubKey();
        assert(pubkey.begin() + 33 == pubkey.end());
        BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out);
    } else
    {
        assert(begin() + 32 == end());
        BIP32Hash(cc, nChild, 0, begin(), out);
    };
    
    memcpy(ccChild, out+32, 32);
    bool ret = TweakSecret((unsigned char*)keyChild.begin(), begin(), out);
    UnlockObject(out);
    keyChild.fCompressed = true;
    keyChild.fValid = ret;
    return ret;
}

bool CKey::VerifyPubKey(const CPubKey& pubkey) const
{
    if (pubkey.IsCompressed() != fCompressed)
    {
        return false;
    }
    unsigned char rnd[8];
    std::string str = "Bitcoin key verification\n";
    RAND_bytes(rnd, sizeof(rnd));
    uint256 hash = CHashWriter(SER_GETHASH, 0).write((char*)str.data(), str.size()).write((char*)rnd, sizeof(rnd)).GetHash();
    std::vector<unsigned char> vchSig;
    Sign(hash, vchSig);
    return pubkey.Verify(hash, vchSig);
}

bool CPubKey::Derive(CPubKey& pubkeyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const
{
    assert(IsValid());
    assert((nChild >> 31) == 0);
    assert(begin() + 33 == end());
    unsigned char out[64];
    BIP32Hash(cc, nChild, *begin(), begin()+1, out);
    memcpy(ccChild, out+32, 32);
    CECKey key;
    bool ret = key.SetPubKey(*this);
    ret &= key.TweakPublic(out);
    key.GetPubKey(pubkeyChild, true);
    return ret;
}

bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const
{
    out.nDepth = nDepth + 1;
    CKeyID id = key.GetPubKey().GetID();
    memcpy(&out.vchFingerprint[0], &id, 4);
    out.nChild = nChild;
    return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
}

void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen)
{
    static const char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
    HMAC_SHA512_CTX ctx;
    HMAC_SHA512_Init(&ctx, hashkey, sizeof(hashkey));
    HMAC_SHA512_Update(&ctx, seed, nSeedLen);
    unsigned char out[64];
    LockObject(out);
    HMAC_SHA512_Final(out, &ctx);
    key.Set(&out[0], &out[32], true);
    memcpy(vchChainCode, &out[32], 32);
    UnlockObject(out);
    nDepth = 0;
    nChild = 0;
    memset(vchFingerprint, 0, sizeof(vchFingerprint));
}

int CExtKey::SetKeyCode(const unsigned char *pkey, const unsigned char *pcode)
{
    key.Set(pkey, true);
    memcpy(vchChainCode, pcode, 32);
    nDepth = 0;
    nChild = 0;
    memset(vchFingerprint, 0, sizeof(vchFingerprint));
    return 0;
}

CExtPubKey CExtKey::Neutered() const
{
    CExtPubKey ret;
    ret.nDepth = nDepth;
    memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
    ret.nChild = nChild;
    ret.pubkey = key.GetPubKey(true);
    memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
    return ret;
}

void CExtKey::Encode(unsigned char code[74]) const
{
    code[0] = nDepth;
    memcpy(code+1, vchFingerprint, 4);
    code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
    code[7] = (nChild >>  8) & 0xFF; code[8] = (nChild >>  0) & 0xFF;
    memcpy(code+9, vchChainCode, 32);
    code[41] = 0;
    assert(key.size() == 32);
    memcpy(code+42, key.begin(), 32);
}

void CExtKey::Decode(const unsigned char code[74])
{
    nDepth = code[0];
    memcpy(vchFingerprint, code+1, 4);
    nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
    memcpy(vchChainCode, code+9, 32);
    key.Set(code+42, code+74, true);
}

void CExtPubKey::Encode(unsigned char code[74]) const
{
    code[0] = nDepth;
    memcpy(code+1, vchFingerprint, 4);
    code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
    code[7] = (nChild >>  8) & 0xFF; code[8] = (nChild >>  0) & 0xFF;
    memcpy(code+9, vchChainCode, 32);
    assert(pubkey.size() == 33);
    memcpy(code+41, pubkey.begin(), 33);
}

void CExtPubKey::Decode(const unsigned char code[74])
{
    nDepth = code[0];
    memcpy(vchFingerprint, code+1, 4);
    nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
    memcpy(vchChainCode, code+9, 32);
    pubkey.Set(code+41, code+74);
}

bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const
{
    out.nDepth = nDepth + 1;
    CKeyID id = pubkey.GetID();
    
    memcpy(&out.vchFingerprint[0], &id, 4);
    out.nChild = nChild;
    return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode);
}




void CExtKeyPair::EncodeV(unsigned char code[74]) const
{
    code[0] = nDepth;
    memcpy(code+1, vchFingerprint, 4);
    code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
    code[7] = (nChild >>  8) & 0xFF; code[8] = (nChild >>  0) & 0xFF;
    memcpy(code+9, vchChainCode, 32);
    code[41] = 0;
    assert(key.size() == 32);
    memcpy(code+42, key.begin(), 32);
};

void CExtKeyPair::DecodeV(const unsigned char code[74])
{
    nDepth = code[0];
    memcpy(vchFingerprint, code+1, 4);
    nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
    memcpy(vchChainCode, code+9, 32);
    key.Set(code+42, code+74, true);
    pubkey = key.GetPubKey(true);
};

void CExtKeyPair::EncodeP(unsigned char code[74]) const
{
    code[0] = nDepth;
    memcpy(code+1, vchFingerprint, 4);
    code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
    code[7] = (nChild >>  8) & 0xFF; code[8] = (nChild >>  0) & 0xFF;
    memcpy(code+9, vchChainCode, 32);
    assert(pubkey.size() == 33);
    memcpy(code+41, pubkey.begin(), 33);
};

void CExtKeyPair::DecodeP(const unsigned char code[74])
{
    nDepth = code[0];
    memcpy(vchFingerprint, code+1, 4);
    nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
    memcpy(vchChainCode, code+9, 32);
    pubkey.Set(code+41, code+74);
    key.Clear();
};

bool CExtKeyPair::Derive(CExtKey &out, unsigned int nChild) const
{
    if (!key.IsValid())
        return false;
    out.nDepth = nDepth + 1;
    CKeyID id = key.GetPubKey().GetID();
    memcpy(&out.vchFingerprint[0], &id, 4);
    out.nChild = nChild;
    return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode);
};

bool CExtKeyPair::Derive(CExtPubKey &out, unsigned int nChild) const
{
    if ((nChild >> 31) == 0)
    {
        out.nDepth = nDepth + 1;
        CKeyID id = pubkey.GetID();
        memcpy(&out.vchFingerprint[0], &id, 4);
        out.nChild = nChild;
        return pubkey.Derive(out.pubkey, out.vchChainCode, nChild, vchChainCode);
    };
    if (!key.IsValid())
        return false;
    
    out.nDepth = nDepth + 1;
    CKeyID id = pubkey.GetID();
    memcpy(&out.vchFingerprint[0], &id, 4);
    out.nChild = nChild;
    CKey tkey;
    if (!key.Derive(tkey, out.vchChainCode, nChild, vchChainCode))
        return false;
    
    out.pubkey = tkey.GetPubKey(true);
    return true;
};

bool CExtKeyPair::Derive(CKey &out, unsigned int nChild) const
{
    if (!key.IsValid())
        return false;
    
    unsigned char temp[32];
    return key.Derive(out, temp, nChild, vchChainCode);
};

bool CExtKeyPair::Derive(CPubKey &out, unsigned int nChild) const
{
    unsigned char temp[32];
    if ((nChild >> 31) == 0)
    {
        return pubkey.Derive(out, temp, nChild, vchChainCode);
    };
    if (!key.IsValid())
        return false;
    
    CKey tkey;
    if (!key.Derive(tkey, temp, nChild, vchChainCode))
        return false;
    out = tkey.GetPubKey(true);
    return true;
};

CExtPubKey CExtKeyPair::GetExtPubKey() const
{
    CExtPubKey ret;
    ret.nDepth = nDepth;
    memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
    ret.nChild = nChild;
    ret.pubkey = pubkey;
    memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
    return ret;
};

CExtKeyPair CExtKeyPair::Neutered() const
{
    CExtKeyPair ret;
    ret.nDepth = nDepth;
    memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4);
    ret.nChild = nChild;
    ret.pubkey = pubkey;
    ret.key.Clear();
    memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32);
    return ret;
}

void CExtKeyPair::SetMaster(const unsigned char *seed, unsigned int nSeedLen)
{
    static const char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
    HMAC_SHA512_CTX ctx;
    HMAC_SHA512_Init(&ctx, hashkey, sizeof(hashkey));
    HMAC_SHA512_Update(&ctx, seed, nSeedLen);
    unsigned char out[64];
    LockObject(out);
    HMAC_SHA512_Final(out, &ctx);
    key.Set(&out[0], &out[32], true);
    pubkey = key.GetPubKey(true);
    memcpy(vchChainCode, &out[32], 32);
    UnlockObject(out);
    nDepth = 0;
    nChild = 0;
    memset(vchFingerprint, 0, sizeof(vchFingerprint));
};

int CExtKeyPair::SetKeyCode(const unsigned char *pkey, const unsigned char *pcode)
{
    key.Set(pkey, true);
    pubkey = key.GetPubKey(true);
    memcpy(vchChainCode, pcode, 32);
    nDepth = 0;
    nChild = 0;
    memset(vchFingerprint, 0, sizeof(vchFingerprint));
    return 0;
};


bool ECC_InitSanityCheck()
{
    EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
    if(pkey == NULL)
        return false;
    EC_KEY_free(pkey);

    // TODO Is there more EC functionality that could be missing?
    return true;
}