status-im/status-go

View on GitHub
eth-node/crypto/crypto.go

Summary

Maintainability
A
0 mins
Test Coverage
C
72%
package crypto

import (
    "context"
    "crypto/aes"
    "crypto/cipher"
    "crypto/ecdsa"
    "crypto/rand"
    "encoding/hex"
    "errors"
    "fmt"

    "golang.org/x/crypto/sha3"

    types "github.com/status-im/status-go/eth-node/types"

    gethcrypto "github.com/ethereum/go-ethereum/crypto"
)

const (
    aesNonceLength = 12
)

// Sign calculates an ECDSA signature.
//
// This function is susceptible to chosen plaintext attacks that can leak
// information about the private key that is used for signing. Callers must
// be aware that the given digest cannot be chosen by an adversery. Common
// solution is to hash any input before calculating the signature.
//
// The produced signature is in the [R || S || V] format where V is 0 or 1.
func Sign(digestHash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
    return gethcrypto.Sign(digestHash, prv)
}

// SignBytes signs the hash of arbitrary data.
func SignBytes(data []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
    return Sign(Keccak256(data), prv)
}

// SignBytesAsHex signs the Keccak256 hash of arbitrary data and returns its hex representation.
func SignBytesAsHex(data []byte, identity *ecdsa.PrivateKey) (string, error) {
    signature, err := SignBytes(data, identity)
    if err != nil {
        return "", err
    }
    return hex.EncodeToString(signature), nil
}

// SignStringAsHex signs the Keccak256 hash of arbitrary string and returns its hex representation.
func SignStringAsHex(data string, identity *ecdsa.PrivateKey) (string, error) {
    return SignBytesAsHex([]byte(data), identity)
}

// VerifySignatures verifies tuples of signatures content/hash/public key
func VerifySignatures(signaturePairs [][3]string) error {
    for _, signaturePair := range signaturePairs {
        content := Keccak256([]byte(signaturePair[0]))

        signature, err := hex.DecodeString(signaturePair[1])
        if err != nil {
            return err
        }

        publicKeyBytes, err := hex.DecodeString(signaturePair[2])
        if err != nil {
            return err
        }

        publicKey, err := UnmarshalPubkey(publicKeyBytes)
        if err != nil {
            return err
        }

        recoveredKey, err := SigToPub(
            content,
            signature,
        )
        if err != nil {
            return err
        }

        if PubkeyToAddress(*recoveredKey) != PubkeyToAddress(*publicKey) {
            return errors.New("identity key and signature mismatch")
        }
    }

    return nil
}

// ExtractSignatures extract from tuples of signatures content a public key
// DEPRECATED: use ExtractSignature
func ExtractSignatures(signaturePairs [][2]string) ([]string, error) {
    response := make([]string, len(signaturePairs))
    for i, signaturePair := range signaturePairs {
        content := Keccak256([]byte(signaturePair[0]))

        signature, err := hex.DecodeString(signaturePair[1])
        if err != nil {
            return nil, err
        }

        recoveredKey, err := SigToPub(
            content,
            signature,
        )
        if err != nil {
            return nil, err
        }

        response[i] = fmt.Sprintf("%x", FromECDSAPub(recoveredKey))
    }

    return response, nil
}

// ExtractSignature returns a public key for a given data and signature.
func ExtractSignature(data, signature []byte) (*ecdsa.PublicKey, error) {
    dataHash := Keccak256(data)
    return SigToPub(dataHash, signature)
}

func EncryptSymmetric(key, plaintext []byte) ([]byte, error) {
    block, err := aes.NewCipher(key)
    if err != nil {
        return nil, err
    }

    // Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
    salt, err := generateSecureRandomData(aesNonceLength)
    if err != nil {
        return nil, err
    }

    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return nil, err
    }

    encrypted := aesgcm.Seal(nil, salt, plaintext, nil)
    return append(encrypted, salt...), nil
}

func DecryptSymmetric(key []byte, cyphertext []byte) ([]byte, error) {
    // symmetric messages are expected to contain the 12-byte nonce at the end of the payload
    if len(cyphertext) < aesNonceLength {
        return nil, errors.New("missing salt or invalid payload in symmetric message")
    }
    salt := cyphertext[len(cyphertext)-aesNonceLength:]

    block, err := aes.NewCipher(key)
    if err != nil {
        return nil, err
    }
    aesgcm, err := cipher.NewGCM(block)
    if err != nil {
        return nil, err
    }
    decrypted, err := aesgcm.Open(nil, salt, cyphertext[:len(cyphertext)-aesNonceLength], nil)
    if err != nil {
        return nil, err
    }

    return decrypted, nil
}

func containsOnlyZeros(data []byte) bool {
    for _, b := range data {
        if b != 0 {
            return false
        }
    }
    return true
}

func validateDataIntegrity(k []byte, expectedSize int) bool {
    if len(k) != expectedSize {
        return false
    }
    if containsOnlyZeros(k) {
        return false
    }
    return true
}

func generateSecureRandomData(length int) ([]byte, error) {
    res := make([]byte, length)

    _, err := rand.Read(res)
    if err != nil {
        return nil, err
    }

    if !validateDataIntegrity(res, length) {
        return nil, errors.New("crypto/rand failed to generate secure random data")
    }

    return res, nil
}

// TextHash is a helper function that calculates a hash for the given message that can be
// safely used to calculate a signature from.
//
// The hash is calulcated as
//
//    keccak256("\x19Ethereum Signed Message:\n"${message length}${message}).
//
// This gives context to the signed message and prevents signing of transactions.
func TextHash(data []byte) []byte {
    hash, _ := TextAndHash(data)
    return hash
}

// TextAndHash is a helper function that calculates a hash for the given message that can be
// safely used to calculate a signature from.
//
// The hash is calulcated as
//
//    keccak256("\x19Ethereum Signed Message:\n"${message length}${message}).
//
// This gives context to the signed message and prevents signing of transactions.
func TextAndHash(data []byte) ([]byte, string) {
    msg := fmt.Sprintf("\x19Ethereum Signed Message:\n%d%s", len(data), string(data))
    hasher := sha3.NewLegacyKeccak256()
    _, _ = hasher.Write([]byte(msg))
    return hasher.Sum(nil), msg
}

func EcRecover(ctx context.Context, data types.HexBytes, sig types.HexBytes) (types.Address, error) {
    // Returns the address for the Account that was used to create the signature.
    //
    // Note, this function is compatible with eth_sign and personal_sign. As such it recovers
    // the address of:
    // hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
    // addr = ecrecover(hash, signature)
    //
    // Note, the signature must conform to the secp256k1 curve R, S and V values, where
    // the V value must be be 27 or 28 for legacy reasons.
    //
    // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
    if len(sig) != 65 {
        return types.Address{}, fmt.Errorf("signature must be 65 bytes long")
    }
    if sig[64] != 27 && sig[64] != 28 {
        return types.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
    }
    sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
    hash := TextHash(data)
    rpk, err := SigToPub(hash, sig)
    if err != nil {
        return types.Address{}, err
    }
    return PubkeyToAddress(*rpk), nil
}