status-im/status-go

View on GitHub
eth-node/crypto/gethcrypto.go

Summary

Maintainability
A
0 mins
Test Coverage
D
65%
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package crypto

import (
    "crypto/ecdsa"
    "crypto/elliptic"
    "crypto/rand"
    "encoding/hex"
    "errors"
    "fmt"
    "io"
    "io/ioutil"
    "math/big"
    "os"

    "golang.org/x/crypto/sha3"

    "github.com/ethereum/go-ethereum/common/math"
    "github.com/ethereum/go-ethereum/crypto/secp256k1"
    "github.com/ethereum/go-ethereum/rlp"

    "github.com/status-im/status-go/eth-node/types"
)

// SignatureLength indicates the byte length required to carry a signature with recovery id.
const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id

// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
const RecoveryIDOffset = 64

// DigestLength sets the signature digest exact length
const DigestLength = 32

var (
    secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
)

var errInvalidPubkey = errors.New("invalid secp256k1 public key")

// Keccak256 calculates and returns the Keccak256 hash of the input data.
func Keccak256(data ...[]byte) []byte {
    d := sha3.NewLegacyKeccak256()
    for _, b := range data {
        _, _ = d.Write(b)
    }
    return d.Sum(nil)
}

// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
// converting it to an internal Hash data structure.
func Keccak256Hash(data ...[]byte) (h types.Hash) {
    d := sha3.NewLegacyKeccak256()
    for _, b := range data {
        _, _ = d.Write(b)
    }
    d.Sum(h[:0])
    return h
}

// Keccak512 calculates and returns the Keccak512 hash of the input data.
func Keccak512(data ...[]byte) []byte {
    d := sha3.NewLegacyKeccak512()
    for _, b := range data {
        _, _ = d.Write(b)
    }
    return d.Sum(nil)
}

// CreateAddress creates an ethereum address given the bytes and the nonce
func CreateAddress(b types.Address, nonce uint64) types.Address {
    data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
    return types.BytesToAddress(Keccak256(data)[12:])
}

// CreateAddress2 creates an ethereum address given the address bytes, initial
// contract code hash and a salt.
func CreateAddress2(b types.Address, salt [32]byte, inithash []byte) types.Address {
    return types.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
}

// ToECDSA creates a private key with the given D value.
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
    return toECDSA(d, true)
}

// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
// never be used unless you are sure the input is valid and want to avoid hitting
// errors due to bad origin encoding (0 prefixes cut off).
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
    priv, _ := toECDSA(d, false)
    return priv
}

// toECDSA creates a private key with the given D value. The strict parameter
// controls whether the key's length should be enforced at the curve size or
// it can also accept legacy encodings (0 prefixes).
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
    priv := new(ecdsa.PrivateKey)
    priv.PublicKey.Curve = S256()
    if strict && 8*len(d) != priv.Params().BitSize {
        return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
    }
    priv.D = new(big.Int).SetBytes(d)

    // The priv.D must < N
    if priv.D.Cmp(secp256k1N) >= 0 {
        return nil, fmt.Errorf("invalid private key, >=N")
    }
    // The priv.D must not be zero or negative.
    if priv.D.Sign() <= 0 {
        return nil, fmt.Errorf("invalid private key, zero or negative")
    }

    priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
    if priv.PublicKey.X == nil {
        return nil, errors.New("invalid private key")
    }
    return priv, nil
}

// FromECDSA exports a private key into a binary dump.
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
    if priv == nil {
        return nil
    }
    return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
}

// UnmarshalPubkey converts bytes to a secp256k1 public key.
func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
    x, y := elliptic.Unmarshal(S256(), pub)
    if x == nil {
        return nil, errInvalidPubkey
    }
    return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}

func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
    if pub == nil || pub.X == nil || pub.Y == nil {
        return nil
    }
    return elliptic.Marshal(S256(), pub.X, pub.Y)
}

// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
    b, err := hex.DecodeString(hexkey)
    if err != nil {
        return nil, errors.New("invalid hex string")
    }
    return ToECDSA(b)
}

// LoadECDSA loads a secp256k1 private key from the given file.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
    buf := make([]byte, 64)
    fd, err := os.Open(file)
    if err != nil {
        return nil, err
    }
    defer fd.Close()
    if _, err := io.ReadFull(fd, buf); err != nil {
        return nil, err
    }

    key, err := hex.DecodeString(string(buf))
    if err != nil {
        return nil, err
    }
    return ToECDSA(key)
}

// SaveECDSA saves a secp256k1 private key to the given file with
// restrictive permissions. The key data is saved hex-encoded.
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
    k := hex.EncodeToString(FromECDSA(key))
    return ioutil.WriteFile(file, []byte(k), 0600)
}

func GenerateKey() (*ecdsa.PrivateKey, error) {
    return ecdsa.GenerateKey(S256(), rand.Reader)
}

func PubkeyToAddress(p ecdsa.PublicKey) types.Address {
    pubBytes := FromECDSAPub(&p)
    return types.BytesToAddress(Keccak256(pubBytes[1:])[12:])
}

// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
    return secp256k1.RecoverPubkey(hash, sig)
}

// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
    s, err := Ecrecover(hash, sig)
    if err != nil {
        return nil, err
    }

    x, y := elliptic.Unmarshal(S256(), s)
    return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}

// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
    x, y := secp256k1.DecompressPubkey(pubkey)
    if x == nil {
        return nil, fmt.Errorf("invalid public key")
    }
    return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
}

// CompressPubkey encodes a public key to the 33-byte compressed format.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
    return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
}

// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
    return secp256k1.S256()
}