sylvchev/mdla

View on GitHub
examples/example_multivariate.py

Summary

Maintainability
F
6 days
Test Coverage
"""Dictionary recovering experiment for multivariate random dataset"""
import matplotlib.pyplot as plt
import numpy as np
from numpy import arange, array, max, min
from numpy.linalg import norm
from numpy.random import RandomState, permutation, rand, randint, randn

from dict_metrics import detection_rate, emd
from mdla import MiniBatchMultivariateDictLearning


def plot_multivariate(objective_error, detection_rate, wasserstein, n_iter, figname):
    fig = plt.figure(figsize=(15, 5))
    step = n_iter

    # plotting data from objective error
    objerr = fig.add_subplot(1, 3, 1)
    _ = objerr.plot(
        step * arange(1, len(objective_error) + 1),
        objective_error,
        color="green",
        label=r"Objective error",
    )
    objerr.axis([0, len(objective_error) - 1, min(objective_error), max(objective_error)])
    objerr.set_xticks(arange(0, step * len(objective_error) + 1, step))
    objerr.set_xlabel("Iteration")
    objerr.set_ylabel(r"Error (no unit)")
    objerr.legend(loc="upper right")

    # plotting data from detection rate 0.99
    detection = fig.add_subplot(1, 3, 2)
    _ = detection.plot(
        step * arange(1, len(detection_rate) + 1),
        detection_rate,
        color="magenta",
        label=r"Detection rate 0.99",
    )
    detection.axis([0, len(detection_rate), 0, 100])
    detection.set_xticks(arange(0, step * len(detection_rate) + 1, step))
    detection.set_xlabel("Iteration")
    detection.set_ylabel(r"Recovery rate (in %)")
    detection.legend(loc="upper left")

    # plotting data from our metric
    met = fig.add_subplot(1, 3, 3)
    _ = met.plot(
        step * arange(1, len(wasserstein) + 1),
        1 - wasserstein,
        label=r"$d_W$",
        color="red",
    )
    met.axis([0, len(wasserstein), 0, 1])
    met.set_xticks(arange(0, step * len(wasserstein) + 1, step))
    met.set_xlabel("Iteration")
    met.set_ylabel(r"Recovery distance")
    met.legend(loc="upper left")

    plt.tight_layout(0.5)
    plt.savefig(figname + ".png")


def _generate_testbed(
    kernel_init_len,
    n_nonzero_coefs,
    n_kernels,
    n_samples=10,
    n_features=5,
    n_dims=3,
    snr=1000,
):
    """Generate a dataset from a random dictionary

    Generate a random dictionary and a dataset, where samples are combination of
    n_nonzero_coefs dictionary atoms. Noise is added, based on SNR value, with
    1000 indicated that no noise should be added.
    Return the dictionary, the dataset and an array indicated how atoms are combined
    to obtain each sample
    """
    dico = [randn(kernel_init_len, n_dims) for i in range(n_kernels)]
    for i in range(len(dico)):
        dico[i] /= norm(dico[i], "fro")

    signals = list()
    decomposition = list()
    for _ in range(n_samples):
        s = np.zeros(shape=(n_features, n_dims))
        d = np.zeros(shape=(n_nonzero_coefs, 3))
        rk = permutation(range(n_kernels))
        for j in range(n_nonzero_coefs):
            k_idx = rk[j]
            k_amplitude = 3.0 * rand() + 1.0
            k_offset = randint(n_features - kernel_init_len + 1)
            s[k_offset : k_offset + kernel_init_len, :] += k_amplitude * dico[k_idx]
            d[j, :] = array([k_amplitude, k_offset, k_idx])
        decomposition.append(d)
        noise = randn(n_features, n_dims)
        if snr == 1000:
            alpha = 0
        else:
            ps = norm(s, "fro")
            pn = norm(noise, "fro")
            alpha = ps / (pn * 10 ** (snr / 20.0))
        signals.append(s + alpha * noise)
    signals = np.array(signals)

    return dico, signals, decomposition


rng_global = RandomState(1)
n_samples, n_dims = 1500, 3
n_features = kernel_init_len = 20
n_nonzero_coefs = 3
n_kernels, max_iter, n_iter, learning_rate = 50, 10, 1, 1.5
n_jobs, batch_size = -1, 10
detect_rate, wasserstein, objective_error = list(), list(), list()

generating_dict, X, code = _generate_testbed(
    kernel_init_len, n_nonzero_coefs, n_kernels, n_samples, n_features, n_dims
)

# # Create a dictionary
# dict_init = [rand(kernel_init_len, n_dims) for i in range(n_kernels)]
# for i in range(len(dict_init)):
#     dict_init[i] /= norm(dict_init[i], 'fro')
dict_init = None

learned_dict = MiniBatchMultivariateDictLearning(
    n_kernels=n_kernels,
    batch_size=batch_size,
    n_iter=n_iter,
    n_nonzero_coefs=n_nonzero_coefs,
    n_jobs=n_jobs,
    learning_rate=learning_rate,
    kernel_init_len=kernel_init_len,
    verbose=1,
    dict_init=dict_init,
    random_state=rng_global,
)

# Update learned dictionary at each iteration and compute a distance
# with the generating dictionary
for _ in range(max_iter):
    learned_dict = learned_dict.partial_fit(X)
    # Compute the detection rate
    detect_rate.append(detection_rate(learned_dict.kernels_, generating_dict, 0.99))
    # Compute the Wasserstein distance
    wasserstein.append(emd(learned_dict.kernels_, generating_dict, "chordal", scale=True))
    # Get the objective error
    objective_error.append(learned_dict.error_.sum())

plot_multivariate(
    array(objective_error),
    array(detect_rate),
    100.0 - array(wasserstein),
    n_iter,
    "multivariate-case",
)


# Another possibility is to rely on a callback function such as
def callback_distance(loc):
    ii, iter_offset = loc["ii"], loc["iter_offset"]
    n_batches = loc["n_batches"]
    if np.mod((ii - iter_offset) / int(n_batches), n_iter) == 0:
        # Compute distance only every 5 iterations, as in previous case
        d = loc["dict_obj"]
        d.wasserstein.append(
            emd(loc["dictionary"], d.generating_dict, "chordal", scale=True)
        )
        d.detect_rate.append(detection_rate(loc["dictionary"], d.generating_dict, 0.99))
        d.objective_error.append(loc["current_cost"])


# reinitializing the random generator
learned_dict2 = MiniBatchMultivariateDictLearning(
    n_kernels=n_kernels,
    batch_size=batch_size,
    n_iter=max_iter * n_iter,
    n_nonzero_coefs=n_nonzero_coefs,
    callback=callback_distance,
    n_jobs=n_jobs,
    learning_rate=learning_rate,
    kernel_init_len=kernel_init_len,
    verbose=1,
    dict_init=dict_init,
    random_state=rng_global,
)
learned_dict2.generating_dict = list(generating_dict)
learned_dict2.wasserstein = list()
learned_dict2.detect_rate = list()
learned_dict2.objective_error = list()

learned_dict2 = learned_dict2.fit(X)

plot_multivariate(
    array(learned_dict2.objective_error),
    array(learned_dict2.detect_rate),
    array(learned_dict2.wasserstein),
    n_iter=1,
    figname="multivariate-case-callback",
)