tensorflow/models

View on GitHub
official/vision/dataloaders/retinanet_input.py

Summary

Maintainability
C
1 day
Test Coverage
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for RetinaNet.

Parse image and ground-truths in a dataset to training targets and package them
into (image, labels) tuple for RetinaNet.
"""

from typing import Optional

# Import libraries

from absl import logging
import tensorflow as tf, tf_keras

from official.vision.configs import common as cfg
from official.vision.dataloaders import parser
from official.vision.dataloaders import utils
from official.vision.ops import anchor
from official.vision.ops import augment
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops


class Parser(parser.Parser):
  """Parser to parse an image and its annotations into a dictionary of tensors."""

  def __init__(self,
               output_size,
               min_level: int | None,
               max_level,
               num_scales: int | None,
               aspect_ratios: list[float] | None,
               anchor_size: float | None,
               match_threshold=0.5,
               unmatched_threshold=0.5,
               box_coder_weights=None,
               aug_type=None,
               aug_rand_hflip=False,
               aug_rand_jpeg: cfg.RandJpegQuality | None = None,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               use_autoaugment=False,
               autoaugment_policy_name='v0',
               skip_crowd_during_training=True,
               max_num_instances=100,
               dtype='bfloat16',
               resize_first: Optional[bool] = None,
               mode=None,
               pad=True,
               keep_aspect_ratio=True):
    """Initializes parameters for parsing annotations in the dataset.

    If one provides `input_anchor` when calling `_parse_eval_data()` and
    `_parse_train_data()`, the `min_level`, `num_scales`, `aspect_ratios`, and
    `anchor_size` can be `None`.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      min_level: `int` number of minimum level of the output feature pyramid.
        Can be `None` if `input_anchor` is provided in `_parse_*_data()`.
      max_level: `int` number of maximum level of the output feature pyramid.
      num_scales: `int` number representing intermediate scales added on each
        level. For instances, num_scales=2 adds one additional intermediate
        anchor scales [2^0, 2^0.5] on each level. Can be `None` if
        `input_anchor` is provided in `_parse_*_data()`.
      aspect_ratios: `list` of float numbers representing the aspect ratio
        anchors added on each level. The number indicates the ratio of width to
        height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors
        on each scale level. Can be `None` if `input_anchor` is provided in
        `_parse_*_data()`.
      anchor_size: `float` number representing the scale of size of the base
        anchor to the feature stride 2^level. Can be `None` if `input_anchor` is
        provided in `_parse_*_data()`.
      match_threshold: `float` number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: `float` number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
      box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h,
        and w when encoding box coordinates. If set to None, does not perform
        scaling. For Faster RCNN, the open-source implementation recommends
        using [10.0, 10.0, 5.0, 5.0].
      aug_type: An optional Augmentation object to choose from AutoAugment and
        RandAugment.
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
      aug_rand_jpeg: if not None, apply random JPEG quality change augmentation.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy
        during training.
      autoaugment_policy_name: `string` that specifies the name of the
        AutoAugment policy that will be used during training.
      skip_crowd_during_training: `bool`, if True, skip annotations labeled with
        `is_crowd` equals to 1.
      max_num_instances: `int` number of maximum number of instances in an
        image. The groundtruth data will be padded to `max_num_instances`.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
      resize_first: Optional `bool`, if True, resize the image before the
        augmentations; computationally more efficient.
      mode: a ModeKeys. Specifies if this is training, evaluation, prediction or
        prediction with ground-truths in the outputs.
      pad: A bool indicating whether to pad the input image to make it
        size a factor of 2**max_level. The padded size will be the smallest
        rectangle, such that each dimension is the smallest multiple of 
        2**max_level which is larger than the desired output size. For example,
        if desired output size = (320, 320) and max_level = 7, the output padded
        size = (384, 384). This is necessary when using FPN as it assumes each
        lower feature map is 2x size of its higher neighbor. Without padding,
        such relationship may be invalidated. The backbone may produce 5x5 and
        2x2 consecutive feature maps, which does not work with FPN.
      keep_aspect_ratio: `bool`, if True, keep the aspect ratio when resizing.
    """
    self._mode = mode
    self._max_num_instances = max_num_instances
    self._skip_crowd_during_training = skip_crowd_during_training

    # Anchor.
    self._output_size = output_size
    self._min_level = min_level
    self._max_level = max_level
    self._num_scales = num_scales
    self._aspect_ratios = aspect_ratios
    self._anchor_size = anchor_size
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold
    self._box_coder_weights = box_coder_weights

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_rand_jpeg = aug_rand_jpeg
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # Data augmentation with AutoAugment or RandAugment.
    self._augmenter = None
    if aug_type is not None:
      if aug_type.type == 'autoaug':
        logging.info('Using AutoAugment.')
        self._augmenter = augment.AutoAugment(
            augmentation_name=aug_type.autoaug.augmentation_name,
            cutout_const=aug_type.autoaug.cutout_const,
            translate_const=aug_type.autoaug.translate_const)
      elif aug_type.type == 'randaug':
        logging.info('Using RandAugment.')
        self._augmenter = augment.RandAugment.build_for_detection(
            num_layers=aug_type.randaug.num_layers,
            magnitude=aug_type.randaug.magnitude,
            cutout_const=aug_type.randaug.cutout_const,
            translate_const=aug_type.randaug.translate_const,
            prob_to_apply=aug_type.randaug.prob_to_apply,
            exclude_ops=aug_type.randaug.exclude_ops)
      elif aug_type.type == 'ssd_random_crop':
        logging.info('Using SSD Random Crop.')
        self._augmenter = augment.SSDRandomCrop(
            params=aug_type.ssd_random_crop.ssd_random_crop_params,
            aspect_ratio_range=aug_type.ssd_random_crop.aspect_ratio_range,
            area_range=aug_type.ssd_random_crop.area_range,
        )
      else:
        raise ValueError(f'Augmentation policy {aug_type.type} not supported.')

    # Deprecated. Data Augmentation with AutoAugment.
    self._use_autoaugment = use_autoaugment
    self._autoaugment_policy_name = autoaugment_policy_name

    # Data type.
    self._dtype = dtype

    # Input pipeline optimization.
    self._resize_first = resize_first

    # Whether to pad image to make its size the smallest factor of 2*max_level.
    # This is needed when using FPN decoder.
    self._pad = pad

    self._keep_aspect_ratio = keep_aspect_ratio

  def _resize_and_crop_image_and_boxes(self, image, boxes, pad=True):
    """Resizes and crops image and boxes, optionally with padding."""
    # Resizes and crops image.
    padded_size = None
    if pad:
      padded_size = preprocess_ops.compute_padded_size(self._output_size,
                                                       2**self._max_level)
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=padded_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max,
        keep_aspect_ratio=self._keep_aspect_ratio,
    )

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    return image, boxes, image_info

  def _parse_train_data(self, data, anchor_labeler=None, input_anchor=None):
    """Parses data for training and evaluation."""
    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
    # `ground_truth` of attributes is assumed in shape [N, attribute_size].
    attributes = data.get('groundtruth_attributes', {})
    is_crowds = data['groundtruth_is_crowd']

    # Skips annotations with `is_crowd` = True.
    if self._skip_crowd_during_training:
      num_groundtruths = tf.shape(input=classes)[0]
      with tf.control_dependencies([num_groundtruths, is_crowds]):
        indices = tf.cond(
            pred=tf.greater(tf.size(input=is_crowds), 0),
            true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0],
            false_fn=lambda: tf.cast(tf.range(num_groundtruths), tf.int64))
      classes = tf.gather(classes, indices)
      boxes = tf.gather(boxes, indices)
      for k, v in attributes.items():
        attributes[k] = tf.gather(v, indices)

    # Gets original image.
    image = data['image']
    image_size = tf.cast(tf.shape(image)[0:2], tf.float32)

    less_output_pixels = (
        self._output_size[0] * self._output_size[1]
    ) < image_size[0] * image_size[1]

    # Resizing first can reduce augmentation computation if the original image
    # has more pixels than the desired output image.
    # There might be a smarter threshold to compute less_output_pixels as
    # we keep the padding to the very end, i.e., a resized image likely has less
    # pixels than self._output_size[0] * self._output_size[1].
    resize_first = self._resize_first and less_output_pixels
    if resize_first:
      image, boxes, image_info = self._resize_and_crop_image_and_boxes(
          image, boxes, pad=False
      )
      image = tf.cast(image, dtype=tf.uint8)

    # Apply autoaug or randaug.
    if self._augmenter is not None:
      image, boxes = self._augmenter.distort_with_boxes(image, boxes)

    # Apply random jpeg quality change.
    if self._aug_rand_jpeg is not None:
      image = preprocess_ops.random_jpeg_quality(
          image,
          min_quality=self._aug_rand_jpeg.min_quality,
          max_quality=self._aug_rand_jpeg.max_quality,
          prob_to_apply=self._aug_rand_jpeg.prob_to_apply,
      )

    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    if self._pad:
      padded_size = preprocess_ops.compute_padded_size(
          self._output_size, 2**self._max_level
      )
    else:
      padded_size = self._output_size

    if not resize_first:
      image, boxes, image_info = (
          self._resize_and_crop_image_and_boxes(image, boxes, pad=self._pad)
      )

    image = tf.image.pad_to_bounding_box(
        image, 0, 0, padded_size[0], padded_size[1]
    )
    image = tf.ensure_shape(image, padded_size + [3])

    image_height, image_width, _ = image.get_shape().as_list()

    # Filters out ground-truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    for k, v in attributes.items():
      attributes[k] = tf.gather(v, indices)

    # Assigns anchors.
    if input_anchor is None:
      input_anchor = anchor.build_anchor_generator(
          min_level=self._min_level,
          max_level=self._max_level,
          num_scales=self._num_scales,
          aspect_ratios=self._aspect_ratios,
          anchor_size=self._anchor_size,
      )

    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    if anchor_labeler is None:
      anchor_labeler = anchor.AnchorLabeler(
          match_threshold=self._match_threshold,
          unmatched_threshold=self._unmatched_threshold,
          box_coder_weights=self._box_coder_weights,
      )
    (cls_targets, box_targets, att_targets, cls_weights,
     box_weights) = anchor_labeler.label_anchors(
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

    # Casts input image to desired data type.
    image = tf.cast(image, dtype=self._dtype)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
    }
    if att_targets:
      labels['attribute_targets'] = att_targets
    return image, labels

  def _parse_eval_data(self, data, anchor_labeler=None, input_anchor=None):
    """Parses data for training and evaluation."""

    classes = data['groundtruth_classes']
    boxes = data['groundtruth_boxes']
    # If not empty, `attributes` is a dict of (name, ground_truth) pairs.
    # `ground_truth` of attributes is assumed in shape [N, attribute_size].
    attributes = data.get('groundtruth_attributes', {})

    # Gets original image and its size.
    image = data['image']
    image_shape = tf.shape(input=image)[0:2]

    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    # Converts boxes from normalized coordinates to pixel coordinates.
    boxes = box_ops.denormalize_boxes(boxes, image_shape)

    # Resizes and crops image.
    if self._pad:
      padded_size = preprocess_ops.compute_padded_size(
          self._output_size, 2**self._max_level
      )
    else:
      padded_size = self._output_size

    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._output_size,
        padded_size=padded_size,
        aug_scale_min=1.0,
        aug_scale_max=1.0,
        keep_aspect_ratio=self._keep_aspect_ratio,
    )
    image = tf.ensure_shape(image, padded_size + [3])
    image_height, image_width, _ = image.get_shape().as_list()

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]
    boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale,
                                                 image_info[1, :], offset)
    # Filters out ground-truth boxes that are all zeros.
    indices = box_ops.get_non_empty_box_indices(boxes)
    boxes = tf.gather(boxes, indices)
    classes = tf.gather(classes, indices)
    for k, v in attributes.items():
      attributes[k] = tf.gather(v, indices)

    # Assigns anchors.
    if input_anchor is None:
      input_anchor = anchor.build_anchor_generator(
          min_level=self._min_level,
          max_level=self._max_level,
          num_scales=self._num_scales,
          aspect_ratios=self._aspect_ratios,
          anchor_size=self._anchor_size,
      )

    anchor_boxes = input_anchor(image_size=(image_height, image_width))
    if anchor_labeler is None:
      anchor_labeler = anchor.AnchorLabeler(
          match_threshold=self._match_threshold,
          unmatched_threshold=self._unmatched_threshold,
          box_coder_weights=self._box_coder_weights,
      )
    (cls_targets, box_targets, att_targets, cls_weights,
     box_weights) = anchor_labeler.label_anchors(
         anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes)

    # Casts input image to desired data type.
    image = tf.cast(image, dtype=self._dtype)

    # Sets up ground-truth data for evaluation.
    groundtruths = {
        'source_id': data['source_id'],
        'height': data['height'],
        'width': data['width'],
        'num_detections': tf.shape(data['groundtruth_classes']),
        'image_info': image_info,
        'boxes': box_ops.denormalize_boxes(
            data['groundtruth_boxes'], image_shape),
        'classes': data['groundtruth_classes'],
        'areas': data['groundtruth_area'],
        'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32),
    }
    if 'groundtruth_attributes' in data:
      groundtruths['attributes'] = data['groundtruth_attributes']
    groundtruths['source_id'] = utils.process_source_id(
        groundtruths['source_id'])
    groundtruths = utils.pad_groundtruths_to_fixed_size(
        groundtruths, self._max_num_instances)

    # Packs labels for model_fn outputs.
    labels = {
        'cls_targets': cls_targets,
        'box_targets': box_targets,
        'anchor_boxes': anchor_boxes,
        'cls_weights': cls_weights,
        'box_weights': box_weights,
        'image_info': image_info,
        'groundtruths': groundtruths,
    }
    if att_targets:
      labels['attribute_targets'] = att_targets
    return image, labels