tensorflow/tensorflow

View on GitHub
third_party/xla/xla/tsl/util/stats_calculator.cc

Summary

Maintainability
Test Coverage
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "xla/tsl/util/stats_calculator.h"

#include <iomanip>
#include <map>
#include <queue>
#include <sstream>
#include <string>

namespace tsl {

constexpr int kNodeTypeWidth = 40;

StatsCalculator::StatsCalculator(const StatSummarizerOptions& options)
    : options_(options) {}

std::string StatsCalculator::GetShortSummary() const {
  std::stringstream stream;
  stream << "Timings (microseconds): ";
  run_total_us_.OutputToStream(&stream);
  stream << std::endl;

  stream << "Memory (bytes): ";
  memory_.OutputToStream(&stream);
  stream << std::endl;

  stream << details_.size() << " nodes observed" << std::endl;
  return stream.str();
}

std::ostream& InitField(std::ostream& stream, int width) {
  stream << "\t" << std::right << std::setw(width) << std::fixed
         << std::setprecision(3);
  return stream;
}

std::string StatsCalculator::HeaderString(const std::string& title) const {
  std::stringstream stream;

  stream << "============================== " << title
         << " ==============================" << std::endl;
  if (options_.format_as_csv) {
    stream << "node type, first, avg_ms, %, cdf%, mem KB, times called, "
              "name";
  } else {
    InitField(stream, kNodeTypeWidth) << "[node type]";
    InitField(stream, 9) << "[first]";
    InitField(stream, 9) << "[avg ms]";
    InitField(stream, 8) << "[%]";
    InitField(stream, 8) << "[cdf%]";
    InitField(stream, 10) << "[mem KB]";
    InitField(stream, 9) << "[times called]";
    stream << "\t"
           << "[Name]";
  }
  return stream.str();
}

std::string StatsCalculator::ColumnString(const Detail& detail,
                                          const int64_t cumulative_stat_on_node,
                                          const Stat<int64_t>& stat) const {
  const double first_time_ms = detail.elapsed_time.first() / 1000.0;
  const double avg_time_ms = detail.elapsed_time.avg() / 1000.0;
  const double percentage = detail.elapsed_time.sum() * 100.0 / stat.sum();
  const double cdf_percentage = (cumulative_stat_on_node * 100.0f) / stat.sum();
  const int64_t times_called = detail.times_called / num_runs();

  std::stringstream stream;
  if (options_.format_as_csv) {
    std::string name(detail.name);
    std::replace(name.begin(), name.end(), ',', '\t');
    stream << detail.type << ", " << first_time_ms << ", " << avg_time_ms
           << ", " << percentage << "%, " << cdf_percentage << "%, "
           << detail.mem_used.newest() / 1000.0 << ", " << times_called << ", "
           << name;
  } else {
    InitField(stream, kNodeTypeWidth) << detail.type;
    InitField(stream, 9) << first_time_ms;
    InitField(stream, 9) << avg_time_ms;
    InitField(stream, 7) << percentage << "%";
    InitField(stream, 7) << cdf_percentage << "%";
    InitField(stream, 10) << detail.mem_used.newest() / 1000.0;
    InitField(stream, 9) << times_called;
    stream << "\t" << detail.name;
  }

  return stream.str();
}

void StatsCalculator::OrderNodesByMetric(
    SortingMetric metric, std::vector<const Detail*>* details) const {
  std::priority_queue<std::pair<std::string, const Detail*>> sorted_list;
  const int num_nodes = details_.size();

  for (const auto& det : details_) {
    const Detail* detail = &(det.second);
    std::stringstream stream;
    stream << std::setw(20) << std::right << std::setprecision(10)
           << std::fixed;

    switch (metric) {
      case BY_NAME:
        stream << detail->name;
        break;
      case BY_RUN_ORDER:
        stream << num_nodes - detail->run_order;
        break;
      case BY_TIME:
        stream << detail->elapsed_time.avg();
        break;
      case BY_MEMORY:
        stream << detail->mem_used.avg();
        break;
      case BY_TYPE:
        stream << detail->type;
        break;
      default:
        stream << "";
        break;
    }

    sorted_list.emplace(stream.str(), detail);
  }

  while (!sorted_list.empty()) {
    auto entry = sorted_list.top();
    sorted_list.pop();
    details->push_back(entry.second);
  }
}

void StatsCalculator::ComputeStatsByType(
    std::map<std::string, int64_t>* node_type_map_count,
    std::map<std::string, int64_t>* node_type_map_time,
    std::map<std::string, int64_t>* node_type_map_memory,
    std::map<std::string, int64_t>* node_type_map_times_called,
    int64_t* accumulated_us) const {
  int64_t run_count = run_total_us_.count();

  for (const auto& det : details_) {
    const std::string node_name = det.first;
    const Detail& detail = det.second;

    int64_t curr_time_val =
        static_cast<int64_t>(detail.elapsed_time.sum() / run_count);
    *accumulated_us += curr_time_val;

    int64_t curr_memory_val = detail.mem_used.newest();

    const std::string& node_type = detail.type;

    (*node_type_map_count)[node_type] += 1;
    (*node_type_map_time)[node_type] += curr_time_val;
    (*node_type_map_memory)[node_type] += curr_memory_val;
    (*node_type_map_times_called)[node_type] += detail.times_called / run_count;
  }
}

std::string StatsCalculator::GetStatsByNodeType() const {
  std::stringstream stream;

  stream << "Number of nodes executed: " << details_.size() << std::endl;

  stream << "============================== Summary by node type "
            "=============================="
         << std::endl;

  std::map<std::string, int64_t> node_type_map_count;
  std::map<std::string, int64_t> node_type_map_time;
  std::map<std::string, int64_t> node_type_map_memory;
  std::map<std::string, int64_t> node_type_map_times_called;
  int64_t accumulated_us = 0;

  ComputeStatsByType(&node_type_map_count, &node_type_map_time,
                     &node_type_map_memory, &node_type_map_times_called,
                     &accumulated_us);

  // Sort them.
  std::priority_queue<std::pair<int64_t, std::pair<std::string, int64_t>>>
      timings;
  for (const auto& node_type : node_type_map_time) {
    const int64_t mem_used = node_type_map_memory[node_type.first];
    timings.emplace(node_type.second,
                    std::pair<std::string, int64_t>(node_type.first, mem_used));
  }

  if (options_.format_as_csv) {
    stream << "node type, count, avg_ms, avg %, cdf %, mem KB, times called\n";
  } else {
    InitField(stream, kNodeTypeWidth) << "[Node type]";
    InitField(stream, 9) << "[count]";
    InitField(stream, 10) << "[avg ms]";
    InitField(stream, 11) << "[avg %]";
    InitField(stream, 11) << "[cdf %]";
    InitField(stream, 10) << "[mem KB]";
    InitField(stream, 10) << "[times called]";
    stream << std::endl;
  }

  float cdf = 0.0f;
  while (!timings.empty()) {
    auto entry = timings.top();
    timings.pop();

    const std::string node_type = entry.second.first;
    const float memory = entry.second.second / 1000.0f;

    const int64_t node_type_total_us = entry.first;
    const float time_per_run_ms = node_type_total_us / 1000.0f;

    const float percentage =
        ((entry.first / static_cast<float>(accumulated_us)) * 100.0f);
    cdf += percentage;

    if (options_.format_as_csv) {
      stream << node_type << ", " << node_type_map_count[node_type] << ", "
             << time_per_run_ms << ", " << percentage << "%, " << cdf << "%, "
             << memory << ", " << node_type_map_times_called[node_type]
             << std::endl;
    } else {
      InitField(stream, kNodeTypeWidth) << node_type;
      InitField(stream, 9) << node_type_map_count[node_type];
      InitField(stream, 10) << time_per_run_ms;
      InitField(stream, 10) << percentage << "%";
      InitField(stream, 10) << cdf << "%";
      InitField(stream, 10) << memory;
      InitField(stream, 9) << node_type_map_times_called[node_type];
      stream << std::endl;
    }
  }
  stream << std::endl;
  return stream.str();
}

std::string StatsCalculator::GetStatsByMetric(const std::string& title,
                                              SortingMetric sorting_metric,
                                              int num_stats) const {
  std::vector<const Detail*> details;
  OrderNodesByMetric(sorting_metric, &details);

  double cumulative_stat_on_node = 0;

  std::stringstream stream;
  stream << HeaderString(title) << std::endl;
  int stat_num = 0;
  for (auto detail : details) {
    ++stat_num;
    if (num_stats > 0 && stat_num > num_stats) {
      break;
    }

    // TODO(andrewharp): Make this keep track of the particular metric for cdf.
    cumulative_stat_on_node += detail->elapsed_time.sum();
    stream << ColumnString(*detail, cumulative_stat_on_node, run_total_us_)
           << std::endl;
  }
  stream << std::endl;
  return stream.str();
}

std::string StatsCalculator::GetOutputString() const {
  std::stringstream stream;
  if (options_.show_run_order) {
    stream << GetStatsByMetric("Run Order", BY_RUN_ORDER,
                               options_.run_order_limit);
  }
  if (options_.show_time) {
    stream << GetStatsByMetric("Top by Computation Time", BY_TIME,
                               options_.time_limit);
  }
  if (options_.show_memory) {
    stream << GetStatsByMetric("Top by Memory Use", BY_MEMORY,
                               options_.memory_limit);
  }
  if (options_.show_type) {
    stream << GetStatsByNodeType();
  }
  if (options_.show_summary) {
    stream << GetShortSummary() << std::endl;
  }
  return stream.str();
}

void StatsCalculator::AddNodeStats(const std::string& name,
                                   const std::string& type, int64_t run_order,
                                   int64_t elapsed_time, int64_t mem_used) {
  Detail* detail = nullptr;
  if (details_.find(name) == details_.end()) {
    details_.insert({name, {}});
    detail = &details_.at(name);
    detail->type = type;
    detail->name = name;
    detail->run_order = run_order;
  } else {
    detail = &details_.at(name);
  }
  detail->elapsed_time.UpdateStat(elapsed_time);
  detail->mem_used.UpdateStat(mem_used);
  detail->times_called++;
}

}  // namespace tsl