thi-ng/umbrella

View on GitHub
packages/k-means/src/kmeans.ts

Summary

Maintainability
A
2 hrs
Test Coverage
import type { IDistance } from "@thi.ng/distance";
import { argmin } from "@thi.ng/distance/argmin";
import { DIST_SQ } from "@thi.ng/distance/squared";
import { assert } from "@thi.ng/errors/assert";
import type { IRandom } from "@thi.ng/random";
import { SYSTEM } from "@thi.ng/random/system";
import { weightedRandom } from "@thi.ng/random/weighted-random";
import type { ReadonlyVec, Vec } from "@thi.ng/vectors";
import { add } from "@thi.ng/vectors/add";
import { median } from "@thi.ng/vectors/median";
import { mulN } from "@thi.ng/vectors/muln";
import { zeroes } from "@thi.ng/vectors/setn";
import type { CentroidStrategy, Cluster, KMeansOpts } from "./api.js";

/**
 * Takes an array of n-dimensional `samples` and attempts to assign them to up
 * to `k` clusters (might produce less), using the behavior defined by
 * (optionally) given `opts`.
 *
 * @remarks
 * https://en.wikipedia.org/wiki/K-medians_clustering
 *
 * @param k -
 * @param samples -
 * @param opts -
 */
export const kmeans = <T extends ReadonlyVec>(
    k: number,
    samples: T[],
    opts?: Partial<KMeansOpts>
) => {
    let { dist, initial, maxIter, rnd, strategy } = {
        dist: DIST_SQ,
        maxIter: 32,
        strategy: means,
        ...opts,
    };
    const num = samples.length;
    const dim = samples[0].length;
    const centroidIDs = Array.isArray(initial)
        ? initial
        : initial
        ? initial(k, samples, dist, rnd)
        : initKmeanspp(k, samples, dist, rnd);
    assert(centroidIDs.length > 0, `missing initial centroids`);
    k = centroidIDs.length;
    const centroids: Vec[] = centroidIDs.map((i) => samples[i]);
    const clusters = new Uint32Array(num).fill(k);
    let update = true;
    while (update && maxIter-- > 0) {
        update = __assign(samples, centroids, clusters, dist);
        if (!update) break;
        for (let i = 0; i < k; i++) {
            const impl = strategy(dim);
            for (let j = 0; j < num; j++) {
                i === clusters[j] && impl.update(samples[j]);
            }
            const centroid = impl.finish();
            if (centroid) centroids[i] = centroid;
        }
    }
    return __buildClusters(centroids, clusters);
};

/**
 * k-means++ initialization / selection of initial cluster centroids. Default
 * centroid initialization method for {@link kmeans}.
 *
 * @remarks
 * Might return fewer than `k` centroid IDs if the requested number cannot be
 * fulfilled (e.g. due to lower number of samples and/or distance metric).
 * Throws an error if `samples` are empty.
 *
 * References:
 * - https://en.wikipedia.org/wiki/K-means%2B%2B
 * - http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
 * - http://vldb.org/pvldb/vol5/p622_bahmanbahmani_vldb2012.pdf (TODO)
 *
 * @param k -
 * @param samples -
 * @param dist -
 * @param rnd -
 */
export const initKmeanspp = <T extends ReadonlyVec>(
    k: number,
    samples: T[],
    dist: IDistance<ReadonlyVec> = DIST_SQ,
    rnd: IRandom = SYSTEM
) => {
    const num = samples.length;
    assert(num > 0, `missing samples`);
    k = Math.min(k, num);
    const centroidIDs = [rnd.int() % num];
    const centroids = [samples[centroidIDs[0]]];
    const indices = new Array(num).fill(0).map((_, i) => i);
    const metric = dist.metric;
    while (centroidIDs.length < k) {
        let psum = 0;
        const probs = samples.map((p) => {
            const d =
                dist.from(metric(p, centroids[argmin(p, centroids, dist)!])) **
                2;
            psum += d;
            return d;
        });
        if (!psum) break;
        let id: number;
        do {
            id = weightedRandom(indices, probs, rnd)();
        } while (centroidIDs.includes(id));
        centroidIDs.push(id);
        centroids.push(samples[id]);
    }
    return centroidIDs;
};

/** @internal */
const __assign = <T extends ReadonlyVec>(
    samples: T[],
    centroids: ReadonlyVec[],
    assignments: Uint32Array,
    dist: IDistance<ReadonlyVec>
) => {
    let update = false;
    for (let i = samples.length; i-- > 0; ) {
        const id = argmin(samples[i], centroids, dist)!;
        if (id !== assignments[i]) {
            assignments[i] = id;
            update = true;
        }
    }
    return update;
};

/** @internal */
const __buildClusters = (
    centroids: ReadonlyVec[],
    assignments: Uint32Array
) => {
    const clusters: Cluster[] = [];
    for (let i = 0, n = assignments.length; i < n; i++) {
        const id = assignments[i];
        (
            clusters[id] ||
            (clusters[id] = {
                id,
                centroid: centroids[id],
                items: [],
            })
        ).items.push(i);
    }
    return clusters.filter((x) => !!x);
};

/**
 * Default centroid strategy forming new centroids by averaging the position of
 * participating samples.
 *
 * @param dim -
 */
export const means: CentroidStrategy = (dim) => {
    const acc = zeroes(dim);
    let n = 0;
    return {
        update: (p) => {
            add(acc, acc, p);
            n++;
        },
        finish: () => (n ? mulN(acc, acc, 1 / n) : undefined),
    };
};

/**
 * Centroid strategy forming new centroids via componentwise medians.
 *
 * @remarks
 * https://en.wikipedia.org/wiki/K-medians_clustering
 */
export const medians: CentroidStrategy = () => {
    const acc: ReadonlyVec[] = [];
    return {
        update: (p) => acc.push(p),
        finish: () => (acc.length ? median([], acc) : undefined),
    };
};

/**
 * Means centroid strategy for decimal degree lat/lon positions (e.g. WGS84).
 * Unlike the default {@link means} strategy, this one treats latitude values
 * correctly in terms of the ±180 deg boundary and ensures samples on either
 * side of the Pacific are forming correct centroids.
 *
 * @remarks
 * When using this strategy, you should also use the
 * [`HAVERSINE_LATLON`](https://docs.thi.ng/umbrella/distance/variables/HAVERSINE_LATLON.html)
 * distance metric for {@link KMeansOpts.dist}.
 *
 * @example
 * ```ts
 * import { kmeans, meansLatLon } from "@thi.ng/k-means";
 * import { HAVERSINE_LATLON } from "@thi.ng/distance";
 *
 * kmeans(3, [...], { strategy: meansLatLon, dist: HAVERSINE_LATLON })
 * ```
 *
 * https://en.wikipedia.org/wiki/World_Geodetic_System
 */
export const meansLatLon: CentroidStrategy = () => {
    let lat = 0;
    let lon = 0;
    let n = 0;
    return {
        update: ([$lat, $lon]) => {
            lat += $lat < 0 ? $lat + 360 : $lat;
            lon += $lon;
            n++;
        },
        finish: () => {
            if (!n) return;
            lat /= n;
            if (lat > 180) lat -= 360;
            lon /= n;
            return [lat, lon];
        },
    };
};