torvalds/linux

View on GitHub
virt/kvm/pfncache.c

Summary

Maintainability
Test Coverage
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables kernel and guest-mode vCPU access to guest physical
 * memory with suitable invalidation mechanisms.
 *
 * Copyright © 2021 Amazon.com, Inc. or its affiliates.
 *
 * Authors:
 *   David Woodhouse <dwmw2@infradead.org>
 */

#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/errno.h>

#include "kvm_mm.h"

/*
 * MMU notifier 'invalidate_range_start' hook.
 */
void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start,
                       unsigned long end)
{
    struct gfn_to_pfn_cache *gpc;

    spin_lock(&kvm->gpc_lock);
    list_for_each_entry(gpc, &kvm->gpc_list, list) {
        read_lock_irq(&gpc->lock);

        /* Only a single page so no need to care about length */
        if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) &&
            gpc->uhva >= start && gpc->uhva < end) {
            read_unlock_irq(&gpc->lock);

            /*
             * There is a small window here where the cache could
             * be modified, and invalidation would no longer be
             * necessary. Hence check again whether invalidation
             * is still necessary once the write lock has been
             * acquired.
             */

            write_lock_irq(&gpc->lock);
            if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) &&
                gpc->uhva >= start && gpc->uhva < end)
                gpc->valid = false;
            write_unlock_irq(&gpc->lock);
            continue;
        }

        read_unlock_irq(&gpc->lock);
    }
    spin_unlock(&kvm->gpc_lock);
}

static bool kvm_gpc_is_valid_len(gpa_t gpa, unsigned long uhva,
                 unsigned long len)
{
    unsigned long offset = kvm_is_error_gpa(gpa) ? offset_in_page(uhva) :
                               offset_in_page(gpa);

    /*
     * The cached access must fit within a single page. The 'len' argument
     * to activate() and refresh() exists only to enforce that.
     */
    return offset + len <= PAGE_SIZE;
}

bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len)
{
    struct kvm_memslots *slots = kvm_memslots(gpc->kvm);

    if (!gpc->active)
        return false;

    /*
     * If the page was cached from a memslot, make sure the memslots have
     * not been re-configured.
     */
    if (!kvm_is_error_gpa(gpc->gpa) && gpc->generation != slots->generation)
        return false;

    if (kvm_is_error_hva(gpc->uhva))
        return false;

    if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
        return false;

    if (!gpc->valid)
        return false;

    return true;
}

static void *gpc_map(kvm_pfn_t pfn)
{
    if (pfn_valid(pfn))
        return kmap(pfn_to_page(pfn));

#ifdef CONFIG_HAS_IOMEM
    return memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
#else
    return NULL;
#endif
}

static void gpc_unmap(kvm_pfn_t pfn, void *khva)
{
    /* Unmap the old pfn/page if it was mapped before. */
    if (is_error_noslot_pfn(pfn) || !khva)
        return;

    if (pfn_valid(pfn)) {
        kunmap(pfn_to_page(pfn));
        return;
    }

#ifdef CONFIG_HAS_IOMEM
    memunmap(khva);
#endif
}

static inline bool mmu_notifier_retry_cache(struct kvm *kvm, unsigned long mmu_seq)
{
    /*
     * mn_active_invalidate_count acts for all intents and purposes
     * like mmu_invalidate_in_progress here; but the latter cannot
     * be used here because the invalidation of caches in the
     * mmu_notifier event occurs _before_ mmu_invalidate_in_progress
     * is elevated.
     *
     * Note, it does not matter that mn_active_invalidate_count
     * is not protected by gpc->lock.  It is guaranteed to
     * be elevated before the mmu_notifier acquires gpc->lock, and
     * isn't dropped until after mmu_invalidate_seq is updated.
     */
    if (kvm->mn_active_invalidate_count)
        return true;

    /*
     * Ensure mn_active_invalidate_count is read before
     * mmu_invalidate_seq.  This pairs with the smp_wmb() in
     * mmu_notifier_invalidate_range_end() to guarantee either the
     * old (non-zero) value of mn_active_invalidate_count or the
     * new (incremented) value of mmu_invalidate_seq is observed.
     */
    smp_rmb();
    return kvm->mmu_invalidate_seq != mmu_seq;
}

static kvm_pfn_t hva_to_pfn_retry(struct gfn_to_pfn_cache *gpc)
{
    /* Note, the new page offset may be different than the old! */
    void *old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva);
    kvm_pfn_t new_pfn = KVM_PFN_ERR_FAULT;
    void *new_khva = NULL;
    unsigned long mmu_seq;

    lockdep_assert_held(&gpc->refresh_lock);

    lockdep_assert_held_write(&gpc->lock);

    /*
     * Invalidate the cache prior to dropping gpc->lock, the gpa=>uhva
     * assets have already been updated and so a concurrent check() from a
     * different task may not fail the gpa/uhva/generation checks.
     */
    gpc->valid = false;

    do {
        mmu_seq = gpc->kvm->mmu_invalidate_seq;
        smp_rmb();

        write_unlock_irq(&gpc->lock);

        /*
         * If the previous iteration "failed" due to an mmu_notifier
         * event, release the pfn and unmap the kernel virtual address
         * from the previous attempt.  Unmapping might sleep, so this
         * needs to be done after dropping the lock.  Opportunistically
         * check for resched while the lock isn't held.
         */
        if (new_pfn != KVM_PFN_ERR_FAULT) {
            /*
             * Keep the mapping if the previous iteration reused
             * the existing mapping and didn't create a new one.
             */
            if (new_khva != old_khva)
                gpc_unmap(new_pfn, new_khva);

            kvm_release_pfn_clean(new_pfn);

            cond_resched();
        }

        /* We always request a writeable mapping */
        new_pfn = hva_to_pfn(gpc->uhva, false, false, NULL, true, NULL);
        if (is_error_noslot_pfn(new_pfn))
            goto out_error;

        /*
         * Obtain a new kernel mapping if KVM itself will access the
         * pfn.  Note, kmap() and memremap() can both sleep, so this
         * too must be done outside of gpc->lock!
         */
        if (new_pfn == gpc->pfn)
            new_khva = old_khva;
        else
            new_khva = gpc_map(new_pfn);

        if (!new_khva) {
            kvm_release_pfn_clean(new_pfn);
            goto out_error;
        }

        write_lock_irq(&gpc->lock);

        /*
         * Other tasks must wait for _this_ refresh to complete before
         * attempting to refresh.
         */
        WARN_ON_ONCE(gpc->valid);
    } while (mmu_notifier_retry_cache(gpc->kvm, mmu_seq));

    gpc->valid = true;
    gpc->pfn = new_pfn;
    gpc->khva = new_khva + offset_in_page(gpc->uhva);

    /*
     * Put the reference to the _new_ pfn.  The pfn is now tracked by the
     * cache and can be safely migrated, swapped, etc... as the cache will
     * invalidate any mappings in response to relevant mmu_notifier events.
     */
    kvm_release_pfn_clean(new_pfn);

    return 0;

out_error:
    write_lock_irq(&gpc->lock);

    return -EFAULT;
}

static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva)
{
    unsigned long page_offset;
    bool unmap_old = false;
    unsigned long old_uhva;
    kvm_pfn_t old_pfn;
    bool hva_change = false;
    void *old_khva;
    int ret;

    /* Either gpa or uhva must be valid, but not both */
    if (WARN_ON_ONCE(kvm_is_error_gpa(gpa) == kvm_is_error_hva(uhva)))
        return -EINVAL;

    lockdep_assert_held(&gpc->refresh_lock);

    write_lock_irq(&gpc->lock);

    if (!gpc->active) {
        ret = -EINVAL;
        goto out_unlock;
    }

    old_pfn = gpc->pfn;
    old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva);
    old_uhva = PAGE_ALIGN_DOWN(gpc->uhva);

    if (kvm_is_error_gpa(gpa)) {
        page_offset = offset_in_page(uhva);

        gpc->gpa = INVALID_GPA;
        gpc->memslot = NULL;
        gpc->uhva = PAGE_ALIGN_DOWN(uhva);

        if (gpc->uhva != old_uhva)
            hva_change = true;
    } else {
        struct kvm_memslots *slots = kvm_memslots(gpc->kvm);

        page_offset = offset_in_page(gpa);

        if (gpc->gpa != gpa || gpc->generation != slots->generation ||
            kvm_is_error_hva(gpc->uhva)) {
            gfn_t gfn = gpa_to_gfn(gpa);

            gpc->gpa = gpa;
            gpc->generation = slots->generation;
            gpc->memslot = __gfn_to_memslot(slots, gfn);
            gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn);

            if (kvm_is_error_hva(gpc->uhva)) {
                ret = -EFAULT;
                goto out;
            }

            /*
             * Even if the GPA and/or the memslot generation changed, the
             * HVA may still be the same.
             */
            if (gpc->uhva != old_uhva)
                hva_change = true;
        } else {
            gpc->uhva = old_uhva;
        }
    }

    /* Note: the offset must be correct before calling hva_to_pfn_retry() */
    gpc->uhva += page_offset;

    /*
     * If the userspace HVA changed or the PFN was already invalid,
     * drop the lock and do the HVA to PFN lookup again.
     */
    if (!gpc->valid || hva_change) {
        ret = hva_to_pfn_retry(gpc);
    } else {
        /*
         * If the HVA→PFN mapping was already valid, don't unmap it.
         * But do update gpc->khva because the offset within the page
         * may have changed.
         */
        gpc->khva = old_khva + page_offset;
        ret = 0;
        goto out_unlock;
    }

 out:
    /*
     * Invalidate the cache and purge the pfn/khva if the refresh failed.
     * Some/all of the uhva, gpa, and memslot generation info may still be
     * valid, leave it as is.
     */
    if (ret) {
        gpc->valid = false;
        gpc->pfn = KVM_PFN_ERR_FAULT;
        gpc->khva = NULL;
    }

    /* Detect a pfn change before dropping the lock! */
    unmap_old = (old_pfn != gpc->pfn);

out_unlock:
    write_unlock_irq(&gpc->lock);

    if (unmap_old)
        gpc_unmap(old_pfn, old_khva);

    return ret;
}

int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len)
{
    unsigned long uhva;

    guard(mutex)(&gpc->refresh_lock);

    if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len))
        return -EINVAL;

    /*
     * If the GPA is valid then ignore the HVA, as a cache can be GPA-based
     * or HVA-based, not both.  For GPA-based caches, the HVA will be
     * recomputed during refresh if necessary.
     */
    uhva = kvm_is_error_gpa(gpc->gpa) ? gpc->uhva : KVM_HVA_ERR_BAD;

    return __kvm_gpc_refresh(gpc, gpc->gpa, uhva);
}

void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm)
{
    rwlock_init(&gpc->lock);
    mutex_init(&gpc->refresh_lock);

    gpc->kvm = kvm;
    gpc->pfn = KVM_PFN_ERR_FAULT;
    gpc->gpa = INVALID_GPA;
    gpc->uhva = KVM_HVA_ERR_BAD;
    gpc->active = gpc->valid = false;
}

static int __kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva,
                  unsigned long len)
{
    struct kvm *kvm = gpc->kvm;

    if (!kvm_gpc_is_valid_len(gpa, uhva, len))
        return -EINVAL;

    guard(mutex)(&gpc->refresh_lock);

    if (!gpc->active) {
        if (KVM_BUG_ON(gpc->valid, kvm))
            return -EIO;

        spin_lock(&kvm->gpc_lock);
        list_add(&gpc->list, &kvm->gpc_list);
        spin_unlock(&kvm->gpc_lock);

        /*
         * Activate the cache after adding it to the list, a concurrent
         * refresh must not establish a mapping until the cache is
         * reachable by mmu_notifier events.
         */
        write_lock_irq(&gpc->lock);
        gpc->active = true;
        write_unlock_irq(&gpc->lock);
    }
    return __kvm_gpc_refresh(gpc, gpa, uhva);
}

int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len)
{
    /*
     * Explicitly disallow INVALID_GPA so that the magic value can be used
     * by KVM to differentiate between GPA-based and HVA-based caches.
     */
    if (WARN_ON_ONCE(kvm_is_error_gpa(gpa)))
        return -EINVAL;

    return __kvm_gpc_activate(gpc, gpa, KVM_HVA_ERR_BAD, len);
}

int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long uhva, unsigned long len)
{
    return __kvm_gpc_activate(gpc, INVALID_GPA, uhva, len);
}

void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc)
{
    struct kvm *kvm = gpc->kvm;
    kvm_pfn_t old_pfn;
    void *old_khva;

    guard(mutex)(&gpc->refresh_lock);

    if (gpc->active) {
        /*
         * Deactivate the cache before removing it from the list, KVM
         * must stall mmu_notifier events until all users go away, i.e.
         * until gpc->lock is dropped and refresh is guaranteed to fail.
         */
        write_lock_irq(&gpc->lock);
        gpc->active = false;
        gpc->valid = false;

        /*
         * Leave the GPA => uHVA cache intact, it's protected by the
         * memslot generation.  The PFN lookup needs to be redone every
         * time as mmu_notifier protection is lost when the cache is
         * removed from the VM's gpc_list.
         */
        old_khva = gpc->khva - offset_in_page(gpc->khva);
        gpc->khva = NULL;

        old_pfn = gpc->pfn;
        gpc->pfn = KVM_PFN_ERR_FAULT;
        write_unlock_irq(&gpc->lock);

        spin_lock(&kvm->gpc_lock);
        list_del(&gpc->list);
        spin_unlock(&kvm->gpc_lock);

        gpc_unmap(old_pfn, old_khva);
    }
}