Function DecodePayload
has 9 return statements (exceeds 4 allowed). Open
func DecodePayload(message *pb.WakuMessage, keyInfo *KeyInfo) (*DecodedPayload, error) {
switch message.GetVersion() {
case uint32(0):
return &DecodedPayload{Data: message.Payload}, nil
case uint32(1):
Method Payload.Encode
has 7 return statements (exceeds 4 allowed). Open
func (payload Payload) Encode(version uint32) ([]byte, error) {
switch version {
case 0:
return payload.Data, nil
case 1:
Function validateAndParse
has 6 return statements (exceeds 4 allowed). Open
func validateAndParse(input []byte) (*DecodedPayload, error) {
end := len(input)
if end < 1 {
return nil, errors.New("invalid message length")
}
Function generateSecureRandomData
has 6 return statements (exceeds 4 allowed). Open
func generateSecureRandomData(length int) ([]byte, error) {
x := make([]byte, length)
y := make([]byte, length)
res := make([]byte, length)
Function encryptSymmetric
has 5 return statements (exceeds 4 allowed). Open
func encryptSymmetric(rawPayload []byte, key []byte) ([]byte, error) {
if !validateDataIntegrity(key, aesKeyLength) {
return nil, errors.New("invalid key provided for symmetric encryption, size: " + strconv.Itoa(len(key)))
}
block, err := aes.NewCipher(key)
Function decryptSymmetric
has 5 return statements (exceeds 4 allowed). Open
func decryptSymmetric(payload []byte, key []byte) ([]byte, error) {
// symmetric messages are expected to contain the 12-byte nonce at the end of the payload
if len(payload) < aesNonceLength {
return nil, errors.New("missing salt or invalid payload in symmetric message")
}
Function DecodePayload
has a Cognitive Complexity of 21 (exceeds 20 allowed). Consider refactoring. Open
func DecodePayload(message *pb.WakuMessage, keyInfo *KeyInfo) (*DecodedPayload, error) {
switch message.GetVersion() {
case uint32(0):
return &DecodedPayload{Data: message.Payload}, nil
case uint32(1):
- Read upRead up
Cognitive Complexity
Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.
A method's cognitive complexity is based on a few simple rules:
- Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
- Code is considered more complex for each "break in the linear flow of the code"
- Code is considered more complex when "flow breaking structures are nested"
Further reading
Similar blocks of code found in 2 locations. Consider refactoring. Open
case Symmetric:
if keyInfo.SymKey == nil {
return nil, errors.New("symmetric key is required")
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 100.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76
Similar blocks of code found in 2 locations. Consider refactoring. Open
case Asymmetric:
if keyInfo.PrivKey == nil {
return nil, errors.New("private key is required")
}
- Read upRead up
Duplicated Code
Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:
Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.
When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).
Tuning
This issue has a mass of 100.
We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.
The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.
If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.
See codeclimate-duplication
's documentation for more information about tuning the mass threshold in your .codeclimate.yml
.
Refactorings
- Extract Method
- Extract Class
- Form Template Method
- Introduce Null Object
- Pull Up Method
- Pull Up Field
- Substitute Algorithm
Further Reading
- Don't Repeat Yourself on the C2 Wiki
- Duplicated Code on SourceMaking
- Refactoring: Improving the Design of Existing Code by Martin Fowler. Duplicated Code, p76