wamonite/packermate

View on GitHub

Showing 55 of 55 total issues

File config.py has 496 lines of code (exceeds 250 allowed). Consider refactoring.
Open

# -*- coding: utf-8 -*-

from __future__ import print_function, unicode_literals
from copy import deepcopy
import re
Severity: Minor
Found in packermate/config.py - About 7 hrs to fix

    File vagrant.py has 393 lines of code (exceeds 250 allowed). Consider refactoring.
    Open

    # -*- coding: utf-8 -*-
    
    from __future__ import print_function, unicode_literals
    from urlparse import urlparse
    import requests
    Severity: Minor
    Found in packermate/vagrant.py - About 5 hrs to fix

      Function stream_subprocess has a Cognitive Complexity of 32 (exceeds 5 allowed). Consider refactoring.
      Open

      def stream_subprocess(command_list, quiet = False, working_dir = None, out_to_file = None):
          process = subprocess.Popen(
              command_list,
              bufsize = 0,
              stdout = subprocess.PIPE,
      Severity: Minor
      Found in packermate/process.py - About 4 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Similar blocks of code found in 2 locations. Consider refactoring.
      Open

              if self.installed(name, provider, version) is None:
                  command = '{} box add --provider {} {}'.format(self._vagrant_command, provider, name)
                  if version:
                      command += ' --box-version {}'.format(version)
      
      
      Severity: Major
      Found in packermate/vagrant.py and 1 other location - About 4 hrs to fix
      packermate/vagrant.py on lines 343..359

      Duplicated Code

      Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

      Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

      When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

      Tuning

      This issue has a mass of 74.

      We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

      The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

      If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

      See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

      Refactorings

      Further Reading

      Similar blocks of code found in 2 locations. Consider refactoring.
      Open

              if self.installed(name, provider, version):
                  command = '{} box remove --force --provider {} {}'.format(self._vagrant_command, provider, name)
                  if version:
                      command += ' --box-version {}'.format(version)
      
      
      Severity: Major
      Found in packermate/vagrant.py and 1 other location - About 4 hrs to fix
      packermate/vagrant.py on lines 324..340

      Duplicated Code

      Duplicated code can lead to software that is hard to understand and difficult to change. The Don't Repeat Yourself (DRY) principle states:

      Every piece of knowledge must have a single, unambiguous, authoritative representation within a system.

      When you violate DRY, bugs and maintenance problems are sure to follow. Duplicated code has a tendency to both continue to replicate and also to diverge (leaving bugs as two similar implementations differ in subtle ways).

      Tuning

      This issue has a mass of 74.

      We set useful threshold defaults for the languages we support but you may want to adjust these settings based on your project guidelines.

      The threshold configuration represents the minimum mass a code block must have to be analyzed for duplication. The lower the threshold, the more fine-grained the comparison.

      If the engine is too easily reporting duplication, try raising the threshold. If you suspect that the engine isn't catching enough duplication, try lowering the threshold. The best setting tends to differ from language to language.

      See codeclimate-duplication's documentation for more information about tuning the mass threshold in your .codeclimate.yml.

      Refactorings

      Further Reading

      Function _read_config_includes has a Cognitive Complexity of 26 (exceeds 5 allowed). Consider refactoring.
      Open

          def _read_config_includes(self, config_loader):
              config_data_list = config_loader.get_data()
      
              for config_data in config_data_list:
                  if 'include' in config_data:
      Severity: Minor
      Found in packermate/config.py - About 3 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Cyclomatic complexity is too high in function parse_parameters. (17)
      Open

      def parse_parameters(param_list, config, output, config_lookup = None):
          for param in param_list:
              assert isinstance(param, TargetParameter)
      
              if config_lookup and param.config_key in config_lookup:
      Severity: Minor
      Found in packermate/target.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Cyclomatic complexity is too high in function stream_subprocess. (15)
      Open

      def stream_subprocess(command_list, quiet = False, working_dir = None, out_to_file = None):
          process = subprocess.Popen(
              command_list,
              bufsize = 0,
              stdout = subprocess.PIPE,
      Severity: Minor
      Found in packermate/process.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Function _refresh has a Cognitive Complexity of 23 (exceeds 5 allowed). Consider refactoring.
      Open

          def _refresh(self):
              if self._box_lookup is None:
                  try:
                      box_lines = run_command('{} box list'.format(self._vagrant_command), quiet = True)
      
      
      Severity: Minor
      Found in packermate/vagrant.py - About 3 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Function parse_parameters has a Cognitive Complexity of 22 (exceeds 5 allowed). Consider refactoring.
      Open

      def parse_parameters(param_list, config, output, config_lookup = None):
          for param in param_list:
              assert isinstance(param, TargetParameter)
      
              if config_lookup and param.config_key in config_lookup:
      Severity: Minor
      Found in packermate/target.py - About 3 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Cyclomatic complexity is too high in method _refresh. (12)
      Open

          def _refresh(self):
              if self._box_lookup is None:
                  try:
                      box_lines = run_command('{} box list'.format(self._vagrant_command), quiet = True)
      
      
      Severity: Minor
      Found in packermate/vagrant.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Cyclomatic complexity is too high in function parse_version. (12)
      Open

      def parse_version(version_val):
          if not version_val:
              raise BoxVersionException("Invalid version value: '{}'".format(version_val))
      
          elif isinstance(version_val, Version):
      Severity: Minor
      Found in packermate/vagrant.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Cyclomatic complexity is too high in method _read_config_includes. (11)
      Open

          def _read_config_includes(self, config_loader):
              config_data_list = config_loader.get_data()
      
              for config_data in config_data_list:
                  if 'include' in config_data:
      Severity: Minor
      Found in packermate/config.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Cyclomatic complexity is too high in method _parse. (11)
      Open

          def _parse(self, value):
              lookup_start = value.find('((')
              lookup_end = value.find('))')
      
              if lookup_start >= 0 > lookup_end:
      Severity: Minor
      Found in packermate/config.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Function parse_version has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring.
      Open

      def parse_version(version_val):
          if not version_val:
              raise BoxVersionException("Invalid version value: '{}'".format(version_val))
      
          elif isinstance(version_val, Version):
      Severity: Minor
      Found in packermate/vagrant.py - About 2 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Function _dump_config has a Cognitive Complexity of 18 (exceeds 5 allowed). Consider refactoring.
      Open

          def _dump_config(cls, entry, indent = 0):
              out_list = []
      
              if isinstance(entry, dict):
                  for key in sorted(entry.keys()):
      Severity: Minor
      Found in packermate/config.py - About 2 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Cyclomatic complexity is too high in method _process. (9)
      Open

          def _process(self, value):
              value_list = map(lambda val_str: val_str.strip(), value.split('|'))
              value_list_len = len(value_list)
      
              process_func_list = []
      Severity: Minor
      Found in packermate/config.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Function _parse has a Cognitive Complexity of 17 (exceeds 5 allowed). Consider refactoring.
      Open

          def _parse(self, value):
              lookup_start = value.find('((')
              lookup_end = value.find('))')
      
              if lookup_start >= 0 > lookup_end:
      Severity: Minor
      Found in packermate/config.py - About 2 hrs to fix

      Cognitive Complexity

      Cognitive Complexity is a measure of how difficult a unit of code is to intuitively understand. Unlike Cyclomatic Complexity, which determines how difficult your code will be to test, Cognitive Complexity tells you how difficult your code will be to read and comprehend.

      A method's cognitive complexity is based on a few simple rules:

      • Code is not considered more complex when it uses shorthand that the language provides for collapsing multiple statements into one
      • Code is considered more complex for each "break in the linear flow of the code"
      • Code is considered more complex when "flow breaking structures are nested"

      Further reading

      Cyclomatic complexity is too high in function get_vagrant_output_file_names. (8)
      Open

      def get_vagrant_output_file_names(config, target_list, check_file = True):
          target_file_lookup = {}
          box_metadata_file_name = None
      
          if config.vagrant_output is not None:
      Severity: Minor
      Found in packermate/vagrant.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Cyclomatic complexity is too high in method _get_tar_file_data. (8)
      Open

          def _get_tar_file_data(self, tar_type, tar_name, file_name):
              tar_type_lookup = {
                  'tgz': 'r:gz'
              }
              tar_mode = tar_type_lookup.get(tar_type)
      Severity: Minor
      Found in packermate/config.py by radon

      Cyclomatic Complexity

      Cyclomatic Complexity corresponds to the number of decisions a block of code contains plus 1. This number (also called McCabe number) is equal to the number of linearly independent paths through the code. This number can be used as a guide when testing conditional logic in blocks.

      Radon analyzes the AST tree of a Python program to compute Cyclomatic Complexity. Statements have the following effects on Cyclomatic Complexity:

      Construct Effect on CC Reasoning
      if +1 An if statement is a single decision.
      elif +1 The elif statement adds another decision.
      else +0 The else statement does not cause a new decision. The decision is at the if.
      for +1 There is a decision at the start of the loop.
      while +1 There is a decision at the while statement.
      except +1 Each except branch adds a new conditional path of execution.
      finally +0 The finally block is unconditionally executed.
      with +1 The with statement roughly corresponds to a try/except block (see PEP 343 for details).
      assert +1 The assert statement internally roughly equals a conditional statement.
      Comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop.
      Boolean Operator +1 Every boolean operator (and, or) adds a decision point.

      Source: http://radon.readthedocs.org/en/latest/intro.html

      Severity
      Category
      Status
      Source
      Language